
7 A0AI03 485 AIR FORCE LOGISTICS COMMAND WRIGHT-PATTERSON AFS OH F/6 5/1

AM 79PROCEEDINGS OF THE .JOINT LOGISTICS COMMANDERS JOINT POLICY COORt-ETC(U)

UNCLASSIFIED
N

m1hh/hEEh4EhEomhEEEEEEEEI
EohEEEEmhEmhEI
EEEmhEEEmhEmhE
EEEEEEEEmhhEEE

ARMY MATERIEL DEVELOPMENT AND READINESS COMMAND
NAVAL MATERIAL COMMAND N

AIR FORCE LOGISTICS COMMAND
AIR FORCE SYSTEMS COMMANfl

AD A10 3 4 8 5

PROCEEDINGS OF THE
JOINT LOGISTICS COMMANDERS

JOINT POLICY COORDINATING GROUP ON COMPUTER RESOURCE
MANAGEMENT

COMPUTER SOFTWARE MANAGEMENT SUBGROUP
SOFTWARE WORKSHOP

OF

WWE

21 AUGUST 1979

"APPROVED FOR PUBLIC RELEASE - DISTRIBUTION
UNLIMTED"

THIS REPORT IS NOT AN APPROVED JLC POSITION L -h

.AUG 3 1 1931

L.L
DEPARTMENT OF THE ARMY THE NAVY, AND THE MR FRCE A

80 8 28 057
"UNCLASS IFED/UNLIMITED"

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dsta=Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TTLE4an Subt tIProceedings of the T Iog- S. TYPE OF REPORT & PERIOD COVERED

istics Commanders Joint Policy Coordinating Final
Group on Computer Resource Management; Com-
puter Software Management Software Workshop PERFORMING ORG. REPORT NUMBER

2-5 April 1979 . ,.
7. AUTHOR(*) 8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS 12. fREPORT DATE

HQ AFLC/LOEC /21 Augs 1979r- " '*NUMBER OF PAGES

Wright-Patterson AFB, OH 45433 NU R Aj " 346
14. MONITORING AGENCY NAME & ADDRESS(if different from ControtlinprQfii e) ". SECURITY CLASS. (of this report)

UNCLASSIFIED
ISa. DECLASSIFICATION 'DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved For Public Release, Distribution Unlimited

17, DISTRIBUTION STATEMENT (of the abstract entered in Bock 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

These proceedings contain the Panel Chairpersons reports and Prelim-
inary Panel Recommendations that were produced during the Joint
Logistic Commanders Embedded Computer Software Workshop, 2-5 Apr 79
held at the Naval Postgraduate School, Monterey, CA.

DD F 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(R7hmi Date Entered)

SECuRll Y' CLASSIFICATIONi OF T-1 PAGE(Wfhrn Dsre Fnfrd)

TABLE OF CONTENTS

Repor of the Panel on Software Acquisition/Development Standards 1

Chairman's Cover Letter....................................... 1
Objective.. 3

Background and Scope... 3

Approach.. 3
General Discussion... 4
Recommendations.. 15
Appendix 1 - Panel Participants 19

Appendix 2- Bibliography.............................. 27
Appendix 3 - Strawnian-Embedded Computer System Software Development

Life-Cycle Nikdel Description.......................... 31
Appendix 4 - Charts from Army/Navy/Air Force Briefing on Service

Responses to DODD 5000.29........................... 35
Appendix 5 - Chart Integrating PDSS into Army Acquisition Policy 91

Report of the Panel on Software Documentation......................... 93

Objective.. 93
Scope... 93
Approach.. 93
Discussion... 94
Recommendations.. 96
Appendix 1- Participants...................................... 99
Appendix 2 - Software Documentation References..................... 101
Appendix 3 - Descriptive Paragraphs.............................. 103

Report of the Panel on Standards for Software Quality.................... 127

Objectives.. 127
Scope... 127
Approach.. 129
Discussion... 131
Recommendations.. 138
Appendixi- Participants...................................... 141
Appendix 2 -Bibliography.................................... 145
Appendix 3 - Military Specification Software Quality Assurance Program

Requirements.............................. 147IAppendx 4 -Software Quality Assurance Plan....................... 157
Appendix 5 - Comments on Panel C Report.......................... 159

TABLE OF CONTENTS (Cont'd)

Report of the Panel on Software Acceptance Criteria 161

Objective... 161
Scope.. 161
Approach... 161
Discussion.. 162Recommendations..18
Appendix 1 - Participants....................................... 185
Apdendix 2 - Bibliography....................................... 187
Appendix 3 - Letter to Panel Participants............................ 189
Appendix 4 - Panel Handout...................................... 191
Appendix 5 - Panel Presentation.................................. 197
Appendix 6 - Visual Aids of Panel Presentation to Workshop.............. 233
Appendix 7 - Draft of Proposed Triservice Policy for Software Acceptance

Criteria.. 267
Appendix s - Outline and Draft Material for Proposed Triservice Interim

Guideline on Application of Software Acceptance Criteria....... 269
Appendix 9 -Addendum... 293

iv

1 LIST OF FIGURES

Report of the Panel on Software Acquisition/Development Standards

Figure 1. Embedded Computer System Software Acquisition
Life-Cycle Model 6

Figure 2. Standards Used in Implementing Software Life-Cycle 7
Figure 3. Relationship of MIL Standards to Software Acquisition

Products and Activities 9
Figure 4. Ideal System Life-Cycle 12
Figure 3-1. Embedded Computer System Software Acquisition Life-Cycle

Model ; 33

Report of the Panel on Software Acceptance Criteria

Figure 1. Sample System With Embedded Software 165
Figure 2. Error Model 176
Figure 3. Error Severity/Cost Matrices 179

I
I.

I
31I -

c~c t I

LIST OF TABLES

Report of the Panel on Software Acceptance Criteria

Table 1. DOD Software Standards 168
Table 2. Ideal Software Acquisition Cycle 169
Table 3. Correlation of Standards and Ideal Cycle 170
Table 4. Software Error Categories 175
Table 8-1. Ideal Software Acquisition Cycle 271
Table 8-2. Correlation of Standards and Ideal Cycle 272
Table 8-3. System Level Specification Set (FCI) Acceptance Criteria . . . 277
Table 8-4. Software Acceptance Criteria for Development Spec and

Program Requirements Spec 278
Table 8-5. Software Acceptance Criteria for Design Documentation

(Product Specs) 280
Table 8-6. Software Acceptance Criteria (SAC) for the CPCI (CODE) 282
Table 8-7. SAC for Test Plan Documents 284
Table 8-8. Software Acceptance Criteria for Test Procedures 285
Table 8-9. Software Test Reports' Software Acceptance Criteria 286
Table 8-10. Software Acceptance Criteria for Operators' and Users'

Manuals 287
Table 8-11. Failure Severity/Cost Matrix 290
Table 8-12. Acquisition Impact/Intermediate Factor Matrix 290

Vi

PROCEEDINGS OF THE SOFTWARE WORKSHOP

JOINT LOGISTICS COMMANDERS'

JOINT POLICY COORDINATING GROUP ON COMPUTER RESOURCE MANAGEMENT

MONTEREY, CA, 2-5 APRIL 1979

Report of the Panel on

Soft ware Acquisition/Development Standards

5 April 1979

I Chairman

Joh~n B. Munson - System Development Corporation

I Co-Chairmen

I Norman Berman - U.S. General Accounting Office

Robert Berri - Aerospace Corporation

I
S,'stern

oo2500 COLORADO AVENUE; SANTA MONICA. CALIFORNIA 90406Duvelopr ent TELEPHONE (213) ,29-751 TELEX 65-23158Corporation

June 1, 1979

TO: Panel Members - Software Acquisition/Development Standards Panel

Enclosed is the complete, final report to the Joint Logistics Commanders' Computer
Resource Management Group from our panel on Software Acquisition/Development
Standards.

I have included all comments received, except where rve spoken to you personally. Sorry
there isn't time for one more review pass, but I believe the comments incorporated have
only strengthened and amplified the report, not changed it in any substantive way.

I am pleased with the report, and I believe it is constructive on a very difficult subject. I
thank you for your help and support.

As a result of our report, we may be asked to participate in some further tasks and
activities. Please let me know if you would be willing and able to continue in this effort
if we're asked.

I look forward to seeing and working with you again.

Jchn&B Munson
Vice President
Corporate Software Engineering

JBM:jb
Enclosure

OBJECTIVE

Evaluate the potential for developing triservice standards for the acquisition of
embedded computer system software. Determine the role of MIL Standard 1679 (Navy)
within a set of triservice software acquisition standards.

BACKGROUND AND SCOPE

Each service acquires software for embedded computer systems (ECS) within a very
general framework as typified by MIL Standards 483, 490, and 1521. However, specific
implementations vary widely between services and even between contracting agencies
within the same service. Such items as documentation standards, configuration
management and reviews, and audits are characterized more by their inconsistent
implementation than by their universality. Additionally, such standards are only meant
to be used within an overall framework (service policy) for software acquisition, called a
"Software Acquisition Life-Cycle," which relates specific events, tasks, products, and
reviews to a time-sequenced master plan for software development activities.

Over the years since the initial standards for software acquisition were developed,
experience gained in their use has shown the need for updating and expanding them to
account for experience, earlier errors and omnissions, and improved techniques of
software engineering, and to provide better visibility into the development process. DOD
Directive 5000.29, published in April 1976, emphasized the importance of software in
embedded computer system acquisitions and required each service to define its ECS
software acquisition policy and to modify or add MIL Standards necessary to implement
that policy.

The Software Acquisition Standards Panel looked at how each service responded to
DODD 5000.29, evaluated the current MIL Standard structure to support the policy,
hypothesized a common software acquisition life-cycle process, identified possible areas
where current MIL Standards were inadequate or lacking, and evaluated the potential
impact of a joint, triservice framework for software acquisition. Following this activity,
MIIL Standard 1679 (Navy) was evaluated for its compatibility as a complementary
triservice standard.

APPROACH

The panel on Software Acquisition Standards, consisting of 24 service and industry
members (Appendix 1) met for 2 1/2 day%, April 3-5, 1979. The first half-day was spent in
briefings by panel members concerning how each service responded to DODD 5000.29*.
These briefings are attached as Appendix 4.

* -In summary, Air Force Reg. 800-14 is published and implemented. Army Reg. 70-XXI and Navy Reg. 5200.XX are still drafts undergoing final review. AUl three regulations
deal with the issue of implementing DODD 5000.29 and all specify general
characteristics (albeit, varying widely in level of detail) for implementing specific
software acquisition practices.

3

Folowing the briefings, the panel divided into three working group.: to investigate
three major sub-issues:

1. Potential commonality (triservice) for software acquisition life-cycle
management (J. Munson, Chairman).

2. \dequacy of current MIL Standards to support common acquisition
management, including MIL Standard 1679 (Navy) (R. Berri, Chairman).

3. A'dequacy of current acquisition practices relative to acquiring capabilities
needed for post-developm ent/deploymnent software support (PDSS) activities
(e.g., operations and support) (N. Berman, Chairman).

During the remaining 2 days, each working group independently pursued their goals
and held joint coordination meetings twice daily, leading to a consolidated consensus
summary and report containing five specific areas of recommendation to the full
colnputer resource management group the afternoon of 5 April.

(IENERAL DISCUSSION

Four najor observations became apparent to the panel in the first joint session and
these drove most of the activities and discussion for the rest of the investigations. These
wxe re:

i. Specific MIL Standards can be discussed and evaluated only in the context of
am existing, overlying software acquisition life-cycle policy.

2. No technicl reason for not having a consistent (triservice) VIL Standard
framework was seen, nor could any be hypothesized.

3. Portions of MIL Standard 1679 (Navy) definitely fill a void in current
acquisition practices; but the Standard is written in such a way that it is
"stind-alone" regarding existing standards and practices.

4. %lost current emphasis on software acquisition policy considers software
development as a discrete activity and fails to adequately integrate its
acquisition into the broader system acquisition framework (in contrast with the
intent of DOD 5000.29).

4

Software_ Acquisition Life-Cycle Policy

Any discussion of the adequacy of a specific MIL Standard f or use in software
acquisition management immediately raises the issue that standards are specific,
discrete tools used in the more general process of specifying and managing the
development of software for embedded computer systems. As such, a meaningful
evaluation of standards can be made only in light of a more general policy which defines
a software acquisition framework and includes the tasks, events, products, activities, and
controls which will be employed as an overlying strategy for acquiring software. This
framework, generally called a software acquisition development life-cycle model,
provides the context in which standards can describe the various specific contractual
requirements for successfully implementing a software development activity (Figure 1).

Each service, to a greater or lesser degree, has implemented its policy to provide
this basic framework. The panel found that to the level documented, all services were
basically in accord at the policy level. However, differences in both nomenclature and
emphasis tended to confuse the interpretation, while variations in level of detail made it
difficult to be sure how any given acquisition agency would interpret these instructions.
For the panel's purposes, only by constructing a detailed, composite life-cycle model,
based on the needs of a hypothetical ECS software RFP, was it possible to structure a
basis for evaluating discrete -standards. This led the panel to the conclusion that either
each service policy should be reviewed by the ,JLC to ensure that each is detailed,
complete, and consistent in the area of life-cycle management or to determine that a
single policy should exist for all services. In the panel's opinion, that area of service
regulations (i.e., the Regulations AR70-XX, AFR 800-14, and SECNAVINST 5200.XX)
dealing with ECS software acquisition (excluding organizational roles, missions, and
relationships) should be consolidated into one joint service policy statement. Without
such a common framework and implementation directive, the development of proposed
joint standards becomes problematical at best. The panel summarized the work it went
through to develop a life-cycle model, and has included it as Appendix 3. The panel
believes this ,;trawman model can, and should, serve as the basis for constructing a
joint-service policy statement on ECS software acquisition management.

Triservice MIL Standards

In evaluating specific standards to implement the proposed life-cycle model, the
panel used the information supplied by General Lasher, Figure 2, service-specific
documentation, the references listed in Appendix 2, and the broad technical knowledge of
the individual panel members. The panel was also well-informed of the efforts of the
three other Computer Resource Management (CRM) panels, which were reviewing
soft ware documentation, quality assurance, and acceptance criteria.

t 51

C:

I -

a C.. .9

0

C)

C)

0

Ii
- - -

11 >.~ ,~.

-V ~-- C/)

I C)C)

-~ I A -

I. - 4K
C ~C)

C 2
0.-

A -~ A
-~ I A V
- C: - C)

- -~ C.- -.- - -, V
- VnI A C)

S

3~I~

A mA C)
a --I -, -

I -o
Al

(3

asyg vivo

ONIIHVHO MO1IA

SNOIIINI A - SVYH31 NOf

IN3Y4SS3SSV AIIIVI13HI 4

N011V31 iiI33 IN3GN3d3GNl

N 0
IV3NJLS Alu~nilJfO N-

z R

cc N

N4l0V8 3INI

** N 0 l~*

SNOIIVDIil3dS 0

.00

'Id'0
) cc

9N11S3 -"I-

OC o

<

> Do

am z

To summarize this evaluation, the panel generated Figure 3, which characterizes
software acquisition as products, activities, and controls, and relates existing MIL
Standards to each element. As noted in the chart, key elements are currently covered by
existing MIL Standards, with the exception of "development activities."

Those specific areas with the highest priority need for review and improvement are
currently being addressed by the JLC-CRM (e.g., specifications and documentation, QA,
and acceptance criteria). Other applicable standards were identified as needing
additional work, but were not deemed to be as high priority as the ones currently being
addressed by the JLC-CRM. Since the only tangible product of software development is
documentation (from requirements specifications to computer program listings and test
reports), the area of specifications and other documentation is key to the entire
acquisition process, and therefore is the basis for the life-cycle model framework and the
highest priority project.

In essence, the panel's conclusion from this review is:

1. Triservice commonality of military software acquisition standards is possible,
r)actical, and essential to rational military software acquisition management

and industry's cost-effective ability to respond to it.

2. This commonality should be achieved within a common triservice ECS software
acquisition life-cycle development policy.

3. This commonality should be built on the existing framework currently utilized

in most military agencies today (MIL Standards 483, 490, 1521, 52779, etc.).

MIL Standard 1679 (Navy)

This conclusion still leaves the issue of MIL Standard 1679 (Navy). In this case, the
panel concluded that MIL Standard 1679 (Navy) contains many concepts which are
important additions to acquisition policy and should be tailored to address those
activities (identified in Figure 3) which deal specifically with software production,
currently the major unaddressed area. Also, the new MIL Standard 1679 (Navy) should
recognize existing MIL Standards for those areas where adequate standards exist or are
being generated. Specifically, Sections 5.3 through 5.8 of MIL Standard 1679 (Navy)
should be used as the basis for a triservice software production standard which can
specify and control production practices of software development organizations. This
conclusion recognizes the current, sharply divided opinion relative to the advisability of a
standard dealing with what until now have been contractor-discretionary production
management practices.

8

00

0 ; 1 0 z V)
o 0

o 0~ c0
a~ 2

w Lu U, a 2
LAc->

uj 0

LLI
>

D ~
Pz

(D Wr a 0

w~n 07 ~ C-

.0 0
ca~ u. _u

C.)O o 0.. E

0'~

U v z S .

cn 0 13 -

C~ w 4 j.g C .0

4z z in cn
w 04

Lu U C

a.0 0 r

in the panel's opinion, the revision of MIL Standard 1679 (Navy) must take into
account the technical work currently being done on the same subject by the Air Force's
Electronic Systems Division and by the Rome Air Development Center, as well as studies
done by the Air Force Test & Evaluation Command concerning software maintainability
characterLs tics.

Post-Development/Deployment Software Support

In the review of the impact of post-development/deployment software support
(PDSS) on the acquisition cycle, the panel recognizes that the various services have tried
to strengthen front-end planning to more adequately address this issue in the future. The
Armny's Computer Resource Management Plan (CRMP) and the Air Force CRISP both deal
with tile planning necessary for PDSS. The review of the requirements expressed in these
plans identified several major areas of shortcomings in respect to PDSS which will
clearly impact, and could cause failures in, future acquisitions. One of our panel
members has recently performed an Army study of the life-cycle events as they relate to
PI)SS. This study is included in Appendix 5 as an example of how pervasive this front-end
planning must 1e to achieve an adequate software logistics capability. This concern for
softwzlre logistics must be expanded beyond the scope of what either the CRMP or CRISP
currently contemplate and must be defined much as the Navy LCMP is defined in
5200.23. These plans, developed in concert with the intended PDSS support agency, must
address the support concept and relate the needs of the support organization in
acquisition and development plans. For example, such items as the development of
comp)uter programs for data simulation, test data recording and reduction techniques,
iind built-in test diagnostics must be procured and validated with the operational
.a. . urtherinor, provision to buy adequate maintenance documentation, the

requimre'd delivery of contractor-developed (or even proprietary) development tools, and
even ensuring delivery of all test materials and results (for use in PDSS regression
testug) n iv t.e essential to cost-effective PDSS and must be contemplated in the
development contract. In addition, any software development techniques which can
inprove the characteristics for enhanced software PDSS must either be added to the
revised 1.IL Standard 1679 (Navy) or be included in the statement of work at development
t I i(nc.

Finnlly, a software development model for PDSS should be developed to ensure that
the disciplines and controls enforced during acquisition are not totally disregarded during
the activities of error correction and program modification in PDSS.

The Need to Embed Software Acquisition into System Acquisition

The panel addressed the issue that although the JLC was taking important and
significant steps to improve our military's capability to acquire software (either
stand-alone software or software embedded in systems), little has been done to relate
these procedures to system procurement philosophy. Also, little authoritative guidance
exists to aid acquisition agencies building an embedded computer system concerning how
the total system can be procured and managed relative to the software. These very
important issues can be addressed and explained best by some background followed by
some examples.

10

Although the system life-cycle is generally initiated by an ROC (Required
Operational Capability) or equivalent statement of the user requirement, and the system
is defined by an "All level specification (see Figure 4), the software acquisition cycle is
essentially concerned with the full-scale development phase or its equivalent. It starts
with an authenticated (approved) B-5 specification (performance requirements) and ends
with a Formal Qualification Test (FQT), which ensures that the delivered computer
program performs as specified in the B-5 specification. On the other hand, procurement
of an embedded computer system starts back in the conceptual phase and ends with
transfer and turnover of the system to the using command. Figure 4 is a simplified
description of these events. The first issue is how an acquisition agency gets to the point
where it can accomplish software procurement. The most straightforward approach is to

F a through a typical validation phase, which develops configuration item specification
IB-level) for each element of the system; then, the agency competes and contracts for

Cls in accordance with normal acquisition procedures. However, the responsibility for
the system (as opposed to subsystems) belongs to the military acquisition agency-not the
Cl contractors. If incompatibilities between B-level specifications and A-level
specifications (system performance) occur during test, the acquisition agency must pay in
money and time to have these deviations resolved.

Mnother alternative to solve this problem is to have the validation phase (B-le./el
specification development) contracted for in a competitive validation phase (more than
one contractor in a "shoot-out" leading to selection of a winning contractor to handle
full-scale development, the selection being based on the quality and cost associated with
the B-level specifications). However, there is little or no formal acquisition guidance for
a competitive validation phase. There is no provision to take the best work and ideas
from all contractors and combine them without a new, open competition at the start 3f
full-scale development. After this long process, when the acquisition agency finally
contracts for the Cis in accordance with these B-level specifications, the government is
still responsible for the total system performance. While this method is used frequently
today, it seems to work best when the acquisition agency hires an integrating contractor
to put the pieces together.

Finally, the acquisition agency can contract with a "prime contractor" on the basis
of the A-level (system performance) specification, making the prime contractor
responsible for total system performance. In this case, the government has little or no
control over how CIs are defined, and must depend on the prime to enforce Cl-level
acquisition management procedures, including software. All the controls and MIL
Standards, developed so that the government can monitor and control product
development (i.e., B-5 specifications, PDRs, CDRs, and FQT1s), in effect, become just
advisory to them; and they are now under management control of the prime, who isI contracted to the Government for an A-level specification and who will officially deliverin accordance therewith many years later, following system integration and developmenttest and evaluation (DT&E). Implementation of embedded computer systems, specifically

C3 1 systems, has been extremely confused in recent years in this entire area.

4 -~-40;

- 4;, ~ - 2

4 4 4 0

-- ZO- 4

4 4 4 -

40 *~ 04 4, 4

4 C)

2
E

C)I
C)

r.L.

w

12

'I

I

For example, if the Government is involved with the prime in review and
authentication of both A- and B-level specifications, against which set should the
contractor's performance be accounted? Who runs configuration management and chairs
the CCB (and is accountable for costs due to change)?

Another issue arises during test and acceptance and is the mirror image of the
specification problem. If the services acquire CIs, then they have to perform
system-level integration (or contract for an integrator). Likewise, if they use a prime,
the Government cannot use FQT as formal qualification tests, but instead must wait until
contractor DT&E is completed.

All in all, this issue basically resolves into control and accountability problems that
are currently not well defined, especially regarding software and how it is to be
controlled in total system acquisition.

The panel has no major conclusion or recommendation as a result of this
discussion. In fact, the panel's charter did not include this issue, except the need to
identify it as a major unresolved issue, potentially impacting the JLC efforts to bring
software acquisition management into uniform structure. The general assessment was,
however, that the system-level issues in the final analysis may have a greater impact on
software success than the software acquisition issues.

Other Discussion

During the course of the panel's deliberations, a number of minor sub-issues were
explored and are recorded here only as information:

1. Firmware-The panel felt firmware was only software delivered in a unique
media and should be controlled by the same procedures used for software
acquisition. Furthermore, if anything, even more rigor, especially during test,
should be employed to assure the correctness of firmware because of the
relative inflexibility of the media and the higher likelihood of multicopy
production.

2. Microprocessors/Microcomputers-These were considered by all a major
problem in future systems-especially with the high likelihood of their being
very .deeply embedded into systems (e.g., within hardware CIs), and the high
probability that they will not exist in systems as conventional computers (i.e.,
no peripherals and limited hard-wired I/O channels), thus precluding an ability
for individual test and qualification.

3. PASCAL for Microcomputers-PASCAL is becoming a de facto industry
standard (or lack thereof) for micros and there has been no recognition of this
fact in DODD 5000.31. In addition, it seems clear that commercial pressures
will tend to drive microprocessor/computer technology rather than military
controls or needs. At this point, everyone appears to be ignoring the problemfand waiting for a crisis to focus attention on the issue.

I
| 13

I

4. Operational Test-The ability for a contractor to test major embedded
computer systems in anything close to a realistic operational environment is
virtually impossible in today's world. The implication is that many systems
reach deployment before their true operational effectiveness has been
measured.

5. Independent "V&V" (Verification and Validation)-V&V has become a major new
initiative today as a methodology for improving software quality. However,
there is no agreed-upon definition for V&V or how it is contracted.

The panel concluded that V&V is basically the practice of using a separate
contractor (from the software development contractor) to do those technical
tasks the customer would do if he had the requisite technical manpower
in-house. These tasks subdivide into four major activities:

a. Design verification through independent review, studies, modeling, and

technical analysis.

b. Product development traceability:

(1) Trace B-level specification to A-level specification requirements.

(2) Trace C-level specification to B-level specification requirements.

(3) Trace Section 4 (test) of B-level specification (CPCI) to CPCI test
procedures (test specification for Navy).

For Navy, trace test specification to test procedures.

(4) Trace Section 4 of A-specification to system test procedures.

(5) Identify or execute added testing.

(6) Witness testing for Government when required.

c. Technical review of contractor development activities.

d. Validation of test results through analysis, separate testing, and
contractor test monitoring.

This activity can be extremely valuable to an acquisition agency, but it can
also be very expensive (20-30 percent of development cost). It must be used
selectively and it must be carefully contracted for to prevent contractual
clashes between the V&V contractor and the development contractor.

14

I

6. "Preliminary Design" (a note for the Specifications and Documentation
Panel)-MIL Standards 1521, 483, 490, and' AFR 800-14 all recognize the need
for an early, formal review of the evolving CPCI design. Provision for this
review is envisioned at PDR, when the initial design studies and CPCI system
architecture are reviewed and compared against the authenticated, approved,
and baselined B-5 specification. Unfortunately, current specification
standards do not envision a single document to collect, structure, and record
this information, nor is a consistent level of detail defined. In practice, PDR
can range from a review and rehash of the B-5 specification to a dog-and-pony
show to educate (or overwhelm) the customer representatives.

We propose that either a new document be created or the C-5 specification be
defined in two volumes, so that a deliverable system architecture can be documented and
reviewed prior to its formal presentation at PDR. This document would record all
software system design down to the CPC level and would contain all system
performance-time, space, and accuracy-budgets for the total software system, and a
record of how these are allocated to major segments of the software architecture. In
addition, this document would present CPCI control structure, data base organization,
interface provisions, test plans, and support tools. At PDR this document would be
reviewed and verified (i.e., compared to the B-5 specification) with design and trade
studies presented to support selection of the candidate architecture.

Following PDR, the contractor would maintain this document, keeping it current
and using it to support the detailed design presentations at CDR. This document, plus
the C-5 (Vol. II) would become the product specification following approval at PCA.

RECOMMENDATIONS

1. Issue: Establishment of Triservice Software Acquisition Standards

a. Conclusion

The panel could find no technical reason why consistent software
acquisition standards cannot be established as triservice policy today.

b. Recommendation

Continue the JLC effort to revise and modernize existing MIL Standards
for software acquisition based on the workshop's efforts, the preliminary
prioritization contained herein (Figure 3), and a final prioritization to be
established by the Software Management Subgroup of the JLC-JPCG-CRM.

15

2. Issue: How Does MIL Standard 1679 (Navy) Fit Into a Triservice Acquisition

Policy?

a. Conclusion

The concepts of MIL Standards 1679 (Navy) can fill an important but
neglected role in a comprehensive set of triservice standards. However,
MIL Standard 1679 (Navy) must be modified and tailored to fit the other
proposed standards.

b. Recommendation

Use MIL Standard 1679 (Navy) as the basis for creating a new triservice
standard which deals with software development practices. This requires
that the Navy MIL Standard be tailored to mesh with existing standards
and procedures and be augmented by other existing service efforts in the
area of standards for development practices.

3. [sue: E.stablishment of Triservice Software Acquisition Policy.

a. C:onclusion

The panel considers it essential to the implementation of coherent
software acquisition policy that the JLC formulate and implement a
trservice regulation on software acquisition management that defines a
oofiste!it approach to implementing MIL Standards in the acquisition
p rocess.

: R. eeommendation

Those areas of the service policy responses to DOD Directive 5000.29
should be incorporated into a triservice regulation. To accomplish this,
the JCL's JPCG-CRM should establish a new working group chartered to:

(1) Define a triservice regulation covering the common functional
elements and milestones which comprise the service's software
acquisition life-cycle. These functional elements should be defined
to the level of detail which describes how they can be implemented
by the system user, developer, maintainer, and other operational
support agencies.

It is further recommended that AFR 800-14 be used as a basis for
developing such a regulation since it is the most fully developed of
the existing service regulations. See Appendix 3 for a strawman
versi on.

16

(2) Identify the service documents/policies which are aimed at
implementation of similar functions (for example, PDSS) and arrive
at a common title for both the activity and the document which
guides the implementation of each function.

(3) Coordinate the service's evolutionary efforts to achieve
commonality among the supporting documents which address similar
functions.

4. Issue: Weapon System Acquisition Policy as it Impacts Software Acquisition.

a. Conclusion

Military acquisition policy today is oriented towards procurement of
contract end items. Yet, with the complexity of modern computerized
systems, the services have needed to acquire these as total, integrated
systems. Adequate acquisition policy and guidance does not currently
exist relating to how software is procured when it is a portion of a larger
system, or when it is being managed by a prime contractor rather than the
Governm ent.

b. Recommendation

The JLC-CRM should evaluate the implications for the acquisition policy
relating to software when it is included as part of a larger system
procurement.

5. Issue: Post-Development Operational Software Support.

a. Conclusion

The needs of the post-development software support activities are being
treated neither early enough in the life-cycle nor thoroughly enough
regarding issues which must be resolved during software acquisition.

b. Recommendation

(1) The panel believes that sufficient guidance already exists throughout
the services to identify the important life-cycle planning factors
relating to post-development support; however, the guidance should
be consolidated and enforced.

(2) The panel believes that the requirements for post-development
support resources should be addressed early in the development
process for every weapon system. The post-deployment support
organization should be identified prior to the planning for
engineering development so that the support organization can
participate in that planning, and particularly in the early definition

of post-development resources and facilities.

11

(3) The panel believes that the process for acquiring a quality support
capability (which may include software and/or hardware) needs
improvement, especially with regard to factoring these needs into
ECS procurements:

(a) The post-development support agent should participate in
verifying acceptability of support technical resources. This
process 6s an important factor in assessing system
maintainability. It appears that this is not uniformly done as
part of acceptance or the operational testing process.

(b) Project offices lack sufficient information on the availability
of existing software support tools and facilities. This
information is needed before a decision is made to contract for
development of new support resources.

(c) Project managers should ensure that support resources
acquired during system development can be efficiently
transferred to the support agency by replication or direct
transfer. This transfer may include: required Lu.e of
Government-furnished software; use of existing designs; and
compatibility with existing government facilities.

(d) System-peculiar automatic test equipment is wrongly being
categorized as a nonmission essential support item. Instead, it
should be developed and tested as part of the weapon system.

(e) Specific funds to acquire adequate support resources should be
earmarked by each project office when it formulates the
system cost baseline for engineering development.

(4) Current development standards do not adequately define the test
and evaluation process and level of test requirements for software
changes made during the post-deployment support phase. There is a
need to first define how to classify changes according to
significance. Then, the services should define the process, including
test and evaluation, by which software is released for service use.

(5) The panel has been advised that the Air Force Test and Evaluation
Command has identified certain characteristics which improve
software maintainability. This information should be made available
to the JLC for its consideration and potential application to the
software development practices standard.

18

I
SOFTWARE ACQUISITION/DEVELOPM ENT STANDARDS

PANEL A

CHAIRMAN: MR. JACK MUNSON (213) 829-7511 (X-2787)

Systems Development Corporation
ATTN: MR. JACK MUNSON
2500 Colorado Avenue
Santa Monica, CA 90406

COCHAIRMAN: MR. NORMAN BERMAN (201) 544-2506

U.S. General Accounting Office
ATTN: MR. NORMAN BERMAN
1 I th Floor
434 Walnut Street
Philadelphia, PA 19106

I
1

I
3 19

1~

SOFTWARE ACQUISITION/DEVELOPMENT STANDARDS

PANEL A

ARMY MEMBERS

Commander (602) 538-6068
U.S. Army Electronic Proving Ground AV 879-6068
ATTN: STEEP-CS
(MR. GRADY H. BANISTER, JR.)
Fort fluachuca, AZ 85613

Commander (205) 876-3366
U.S. Army Missile Research AV 746-3366

and Development Command
ATTN: DRDMI-TGG
(MR. JERRY BROOKSHIRE)
Building 4381
Redstone Arsenal, AL 35809

Commander (201) 544-4011
U.S. Army Communications Research AV 995-4011
and Development Command

ATTN: DRDCO-TCS-BA-1
(MR. DAVID B. USECHAK)
Fort Monmouth, NJ 07703

20

I
SOFTWARE ACQUISITION/DEVELOPM ENT STANDARDS

I PANEL A

NAVY MEMBERS

Commander (703) 663-7311
Naval Surface Weapons Center AV 249-7311
ATTN: E33
(MR. ROBERT CROWDER)
Dahlgren, VA 22448

Commander
Naval Weapons Center
ATTN: Code 3108
(MR. DENNIS FARRELL)
China Lake, CA 93555

Commander (202) 692-2591
Naval Sea Systems Command
Code 06D
(CAPT. JAMES E. RADJA)
Washington, D. C. 20362

Commandant AV 224-4522
Marine Corps
ATTN: Code CCA-50
(LTC. J. G. SCHAMBER)
Room 3203
Federal Building No. 2
Washington, D. C. 20380

I

1 21

U

SOFTWARE ACQUISITION/DEVELOPM ENT STANDARDS

PANEL A

AIR FORCE SYSTEMS COMMAND MEMBERS

LTC. CHARLES D. ADAMS (505) 264-9626
ATTN: HQ AFCMD/EN AV 964-9626
Kirtland AFB, NM 87117

MR. ROBERT BERRI (213) 643-1182
ATTN: SAMSO/AQT AV 833-1182
P.O. Box 92960
Worldway Postal Center
Los Angeles, CA 90009

MAJOR R. JOHNSON (301) 981-5731
AFSC/XRF AV 858-5731
Andrews AFB, MD 20334

22

SOFTWARE ACQUISITION/DEVELOPM ENT STANDARDS

PANEL A

AIR FORCE LOGISTICS COMMAND MEMBERS

MR. ROBERT ANDERSON (912) 926-5921
ATIN: Warner Robins - ALC/MMECD AV 468-5921
Warner Robins AFB, GA 31098

MR. DAVID THORNELL (801) 777-7231
ATTN: Ogden ALC/MMECA AV 458-7231
Hill AFB
Ogden, UT 84056

MR. FRED WILSON (513) 255-6411
ATTN: ASD/SD25L AV 785-6411
Wright-Patterson AFB, OH 45433

1

23

M

SOFTW ARE ACQUISITION/DEVELOPM ENT STANDARDS

PANEL A

PANEL INVITEES

MR. JOSEPH P. CERAN (201) 747-6876
Project Manager
Computer Sciences Corporation
Ten Route Thirty-five
Red Bank, NJ 07701

MR. GLENN GUSTAFSON (805) 497-5151 (X-5432)
Federal Systems Division, IBM
Westlake Village, CA 91360

DR. THOMAS MARTIN (609) 338-5853
RCA/GSD
Building No. 206-1
Cherry Hill, NJ 08358

MR. M. G. MESECHER (516) 574-1661
Manager
Computer Systems Programming
Sperry Systems Management
Great Neck, NY 11020

MR. READ MYERS (213) 535-3446
Defense and Space Systems Group
TRW Incorporated
Mail Stop 55/5530
One Space Park
Redondo Beach, CA 90278

MR. DON KANE
MITRE Corporation
Bedford, MA 01730

24

SOFTW ARE ACQUISITION/DEVELOPM ENT STANDARDS

PANEL A

PANEL INVITEES

MR. DON KANE
MITRE Corporation
Bedford, MA 01730

MR. ROBERT REINSTEDT
H AND Corporation
1700 Main Street
Santa Monica, CA 90406

DR. ROBERT TAUSWORThE
Jet Propulsion Laboratory
Stop 238-540
4800 Oak Grove Drive
Pasadena, CA 91103

I 2I
I
I 2

I

!

APPENDIX 2

Bibliography for Software Acquisition/Development
Standards Panel

1. Copies reproduced and handed out to all panel members:

1. DOD Directive 5000.29 April 26, 1976 Management of Computer
Resources in Major Defense
Systems

2. AF Regulation 800-14, Sept. 26, 1975 Acquisition and Support
Vol. I and 11 Procedures for Computer

Resources in Systems

3. Army Regulation 70-XX March 21, 1978 Management of Computer
Draft Resources in Army Defense

Systems

4. SECNAV Instruction Managemert of Computer
5200.XX - Draft Resources in Department of

the Navy Systems

5. NAVELEX Instruction March 1, 1979 NAVELEX Computer Software
5200.23 Life-Cycle Management Guide

6. National Security Dec. 21, 1978 NSA/CSS Software
Agency/Central Security Acquisition Manual
Service Standard 81-2

7. MIL-STD-1679 (Navy) Dec. 1, 1978 Military Standard - Weapon
System Software Development

8. Electronic Systems Feb. 27, 1979 Model, Statement of Work
Division Draft Task for Software

Development

9. ASD TR-78-6 November 1977 Airborne Systems Software
Acquisition Engineering
Guidebook for Regulations,
Specifications, and Standards

10. Vought Corporation Feb. 13, 1979 Government Embedded
ECS Software Document Computer Software

Requirements and Related
Activities

11. AIAA ECS Software Feb. 20, 1979 STAMMP 6, Embedded
Document Computer Software

Documents

27

II. Resources material used for reference:

OMB Circu!ar A-109 Major System Acquisition

OFPP Pamphlet No. I August 1976 Major System Acquisitions
and Discussion of the
Application of OMB Circular
A-109

DODD 5000.1 Jan. 18, 1977 Acquisition of Major Defense

Systems

DODD 5000.2 Jan. 18, 1977 The Decision Coordination
Paper (DCP) and the Defense

Systems Acquisition Review
Council (DSARC)

DODD 5000.3 May 20, 1975 Test and Evaluation

DODD 5000.29 April 26, 1976 Management of Computer
Resources in Major Defense
Systems

DODD 5000.31 Nov. 24, 1976 Interim List of
DOD- Approved Higher-Order
Program ming Languages
(HOL)

DODI 5010.12 Dec. 5, 1968 Management of Technical

Data

DODD 5010.19 July 17, 1968 Configuration Management

MIL-STD-482A April 1, 1974 Configuration Status
Accounting Data Elements
and Related Features

MIL-STD-483 Dec. 31, 1970 Configuration Management
Practices for Systems,
Equipment, Munitions and
Computer Programs

MIL-STD-490 Oct. 30, 1968 Specification Practices

MIL-STD-499A May 1, 1974 Engineering Management

MIL-STD-881A April 25, 1975 WBS for Defense Material
Items

MIL-S-52779 April 5, 1974 Software Quality Assurance
Program Requirements

28

I
I

MIL-STD-1521A June 1, 1976 Technical Reviews and Audits
for Systems, Equipment and

jComputer Programs

MIL-Q-9858A Dec. 16, 1963 Quality Assurance
Requirements

MIL-S-83490 Oct. 30, 1968 Specifications, Types and
Forms

AFR 57-1 Aug. 17, 1971 Policies, Responsibilities and
Procedures for Obtaining
New and Improved
Operational Capabilities (ESD
Supplement 10/30/73)

AFR 65-3 July 1, 1974 Configuration Management

AFR 80-14 Feb. 10, 1975 Test and Evaluation

AFR 300-1 June 10, 1971 Automatic Data Processing
Program Management

AFR 300-2 Nov. 12, 1971 Management of Automatic
Data Procesing Systems

AFR 310-1 June 30, 1969 Management of ContractorData

AFR 800-2 March 16, 1972 Program Management (AFSC
Supplement 10/18/74 and ESD
Supplement 2/25/74)

AFR 800-3 June 1,1976 Engineering of Defense System

AFR 800-4 March 10, 1975 Transfer of Program
Management Responsibility

AFR 800-6 July 14, 1972 Program Control-Financial
(AFSC Supplement 9/4/74)

AFR 800-8 July 27, 1972 Integrated Logistics Support
(ILS) Program for Systems
and Engineering (AFSC
Supplement 10/12/72)

AFR 800-9 April 25, 1973 Production Management in
the Acquisition Life Cycle

29

!

AFR 800-10 Sept. 12, 1973 Management of Multi-
Service Systems, Programs

and Projects

AFR 800-11 Aug. 8, 1973 Life-Cycle Costing (LCC)

AFR 800-12 May 20, 1974 Acquisition of Support
Equipment

AFR 800-14 May 10, 1974 Management of Computer
Volume I Resources in Systems (AFSC

Supplement 9/25/74)

AFR 800-14 Sept. 26, 1975 Acquisition and Support of
Volume II Computer Resources in

Systems

SECNAVINST 3560.1 Aug. 8, 1974 Tactical Digital Systems
Documentation Standards

30

I

APPENDIX 3 - STRAWMAN-EMBEDDED COMPUTER SYSTEM SOFTWARE
DEVELOPMENT LIFE-CYCLE MODEL DESCRIPTION

The model portrayed in the accompanying figure is a proposed improvement to
Figure 2-1 in AFR 800-14, Volume 11. In addition, recommended text modifications to
Chapter 2 of Volume II are outlined where appropriate.

One key assumption is made in the proposed model: the analysis effort required to
derive the system processing requirements, and to allocate these to software and
hardware requirements, was accomplished during the Demonstration and Validation phase
of the Acquisition Life Cycle. Therefore, the Part I specification (as defined in Appendix
VI of MIL-STD--483) is in close to final form when the Software Development Model
starts.

The following commentary serves to explain the new model and to indicate needed
changes to the text of AFR 800-14, should the proposed model be adopted.

3
I
1
I
I
I

I

AFR800-14 Chapter 11 Commentary

Para Comment

2-1 Satisfactory

2-2 Satisfactory

2-3 Satisfactory

2-4 Subparagraph Wb should indicate that the software development specifications
are preliminary only in the sense of needing to reflect the design approach as
necessary. The functional requirements should be complete.

2-5 Subparagraph (a) should relfect the nature of the material to be discussed at
the PDR. Recent practice has evolved to using the Partial Draft of the Part 1I
specification, as indicated in the figure. In addition, the Test Plan should be
prepared to support the PDR, as indicated in the figure. It should also be
noted that this subparagraph indicates that the effort going on is "preliminary
design". Therefore, the "analysis" effort indicated in Figure 2-1 has been
changed to Preliminary Design, consistent with the text. Finally, this
subparagraph is an appropriate place to note the iterative nature of the entire
development process, including Preliminary Design. Therefore, the feedback
arrows of Figure 2-1 have been eliminated in favor of a discussion on the
iterative nature of the process.

Subparagraph Mb should be modified to clarify the last sentence which vaguely
alludes to incremental releases. The revised figure shows incremental releases
more clearly and indicates that the overall product may be reviewed
(incremental CDRs) as well as developed incrementally.

Subparagraph (c) does not differentiate clearly between the Test Plan and Test
Procedures, but indicates the need for test information at CDR, with
subsequent finalization prior to start of testing. This concept is portrayed in
the new figure by the preparation of test procedures subsequent to CDR (the
Test Plan meets the CDR need) and the finalization occurring at a new review
called the Test Readiness Review. The TRR establishes that the procedures,
test materials and test facilities are acceptable to initiate testing. This
subparagraph also should couple the testing of the software to that of the
system in which the software is embedded. This is indicated on the new figure.

2-6 Sa tisf ac tory

32

I -

0
-a

(£2
a 2

zt
a 0'

C.)

a
-~ C.)

a -

I CC.)

-I C)~.)

a -~

a a1 £ $.4Y

, I
0

a
C.)

C.)

I -~
a

-.-- ~ -.- I

c~I -~ C)

~.L4

I
I
I

33

I

2-7 Sat isfactory

2-8 The introductory paragraph should be modified to reflect the new figure. The
iterative nature of the process could be covered here instead of as proposed
for 2-5a above.

Subparagraph (6) should be replaced with a discussion of the elements of
Preliminary Design. Some portions of this are in Subparagraph (b), so both of
the subparagraphs must be revised to reflect the new figure. The need for
authentication of the Part I development specification prior to PDR should be
retained, but the rationale for this needed action should be provided in the text
(i.e., the preliminary design cannot be completed if the functional
requirements are not complete).

Subparagraph (c) needs to be modernized to refer to more recent (and more
acceptable) means of reflecting design than flow charts. Also, it is not clear
that this phase addresses only the modules of the CPCI. The assembling of the
modules into the overall CPCI is the next phase.

Subparagraph (d) should cover the significance of the PQT. The PQT should be
used to formalize the testing of critical modules of the system (but not all).

Subparagraph (e), installation has been removed from the new figure, but the
need for the ability to easily adapt the CPCI is required. This is a design
requirement and should have been addressed in the development specification.
The activity involved is part of the integration of the CPCI into the system.

Subparagraph Mf should be expanded to note the user documentation shown on
the revised figure.

34

LU

CA))

CDI

C/-) LU

LU -) CD

I- L L.3

-F

LLJ CL)
LLLU

LUL

35

CC
-:

C,,
LUJLl L-)'

LUJ LUJ
C:,

LUJ C/1) CL
LL. - M

CLU
C) >- (L)

LLJ C,,

cLJ LL - u.

(D C:) (/)
LUJ

F-- LUJ M
MII LL- L

LUJ LUI C=

I /) LU LUI

><' a) -L C) LLC,

C=; C/)IL U -

C:) LUJ CL- C/)
ar- Jn LUJ -j 4= C)>-

C/) L-) MII (/)
LU = - I
>- LJ - LAJ

-LL. LU LUJ (n
F- LUJ LUJ =I

LU- Z- U) LL.
C= cc: CDLO : LUJ

-C) LU J

cm LL

>- =C/)

C/) -L
LLC/ - LU >-
LU 0-C= V

LU; L) 0-. L /
LI-L

LUi L)

-IC) C/1)U

36

LLL)

0l - IJ C

L-J 'I

V) CL U
L- LU) L

CD V) 2

C:) - C) L- L

<C ~ LD
-4 IU

L LiJ -j LU

C) L

LUJ C/D
-c LL- C/ LU.

CCL C - L
-O LU LUJ - LU

-J J C/) -D -
LO Lk C) dc LU Cl)J
4zc >- --- C)

C/') C3OJ -

X: C:)IL

LL L±J C l) CD Kc LL
-F

L-) V) 2m) LU k
C): 01- ~

C:- LU) -i L-) F- J
LU) 0- C- C- - :

I-J I-- LL.
>- LUJ

C)C P- U
LUC:) - CD

LU LU) C)I D) - C)
=: LL LJ - cc ~

=D U l L > CL. -

LUJ C)t F- CD CC) C) a
M: V) cI r LUz V) =-. LLJ

-J >-C:) LU

C/) LU /)Cc C) V)CL

LU ~ CD C) LU~- C

* 37

C.-;

LUJ

CD'

L-
LUL

U--

-~ ~ LU LU C=)
LD! C.!/)

-. LU CX
Z:~

(.D M -j LUJ
C/) :m >-

cc C:) LU c
M- LU -
E: c- 0-

ca / C)

m: L C>! C3 LU -
LUJ L-) LUI LUI C)

L) C!) - cm 9 0
LUJ

38

LU F-

Fcc

-J_-

Fl- C

T-4

C3- I-

c:: LU -
F- F--

C) LU
C) F

F--
-4 C

F-Cl LUI
C_ >-)

I LUJ
Cl) J LUJ
C:) E::L

C3- LUJ F-
Cl)) C)

C) LUJ

I LUJ LU -
F- C)l

LL0J

39

U

I-

C) CD l

C) CC U
L) M: '-V)C

z:: C/)LU L-)
C)C) C/) CC -- -

- L) LD u- C)
= C) =

= C) 0ct:
CD CL. -

C/)
Lu~C 4= :

L-) Lu C) g:: C/) Ul.
LL Lu

I-j L- wC<t
45 L) CDCl)-

Cl) I L) >-

-LL M: L

C)X
Vl) Li.

C/ ' c.Cl

LL L - u)L~

C/) Vl) L-) Clw C) L

-3 .- U

= c~rD C)
Oct C) ca: C)

cl) C) = l) CD Cl) Luj
LuJ PO CD wL CD Un Lu 1=

40

*LU C)
C/') -4
LU F- 2::-

CD ~LU C:)C) CD C3 &D
QL C/) L-) Cl-

C.') C))4(~T
LLJ CL LUJ

C.') C/) ->
E::U LU C

CD LU-~ LU C=C) LL e-%
VU >- CD C.') = F- Qv

LLJ C) C:)>- -
Cl) F L L

CL . LU C/
LUJ C/') CZ cn' C:) LU C:) =

E:: LU L DL - LU
CL F- CD C ~zc C:) c -:KC/1) az - ;_ LUJ LU - C:)C>- Q3 0- (-) L

0e) .) LL- CD C:)
ULULL -J C- - ICD LUC) (/") F- C L.) L DC.') C U) a _P ; C..)-I-- LUJ I-c w.~ L CD)

=~ LL ... 2 LUJ LU HLU LUJ LU LUJ >- c/) = F- C/') CD
ZZ=LU -_; LU Cl-LU - zc LU I-- V~~ .) H-C.) D =~ OL~D C..) L-)CD CC C:) LU CD c:2 LU >-l 6-z:- CD) 2= E C) co LU V.)

cj_ C: cr- LU C C.') <rcl m 0. C:) -cc
LAJ

C:) C) C-I (
C:) C:) v- uI 1 CD) CDLn UlA I C) C:)

00 CD CD .1I C) C)

CDC) -t: -l c r:

* 41

Lu

0>

42

0 cc
LL) W

u) 0

0 w 0
.. LUI

<2 12 0

,)) 0

LL4 a:

0 F-0j LOOm CL
uj uj U) C

LU -r Z Z Z
0cc0

cc Lq COO C/*0 C wxL

Cf) LLA -J
w C-wU 0.0 >- -w 0

0

I4

a LUrw rz

0 ul

i>>

mm02

.

4 L)r-4 I U
PD.0 W

E. U X X 0u

LU..

0 w

44

E-4s

~1 0

UU

W -I

W :~ LL 0

w 0.20 02

C,, 0 L0

a:Cw Lu
w 'a <

cn cc u 0CD. s0 x 0 cn 0

45

E-4-
0 LI

0 90

00

Pw M
LL L-

>m Zi E-I

EH4 0
0 I- 0C,1m

> wjH: -u c
-2 5 u

46

~fl
w

oD 2
U. -I

o0 C/)

ri n

ui C-

I-j a W W

cc < C.) C Lu

20 U.

U) m. Cfl

0 0 dL L o c L6. U.
LL. w 0 wl j L 0 0

U/ L C) -4 <c.L

47

U 0U

CL LL
aU cis
LL 0

Lm 00u

LIj LL2

az - D~

a: LI

(A LL 0L U L

C-: a 2

Cf: LLI LU 3ccI ("1 C)

Do cc (D Z

* LL X

48

Cl,

LUI

0 c
LL 0j

LU U

oU L
C)L W U

22 - Li~

LU LI

C..; Cc rrw2 cr.a.z

W L U WL CC. J0 C.-4
mJ~e~LUC)CN

llo <c Q C/

C)UJLLJ x 2 LnW > Lu0

LU 0) L UL LJ- U

cL0 LU F LU L<C
5 OmC HO5 0L <0

o 6 /)C

LUU

z
Cl)
-DLJ Ch)

CQ CL

a:) I.. P:2 LU

CC) < U

wL z

>- Lu0WLD .

ccl) o CD UZ j < a f

w 00

1L

00

CC0

CL9 0

60) W r 0
- >- - u

~ C)
CL~ ~ ~ ~ a2 _W 2 LLLO

L'.!) c 0CuO ,

WD LL r-L --

cc ~ W CLC
oo 00QLu / ccca)0LJc

Q," m ni
0 0 0 0.20

cc~ =I-~ cc

* 51

wU

0
cL.

LU cw
(LJ)

m~F1

F-

1- r-0
p F-
<I WCm) 0. -

F- > F-
73~ m E x Wj

cc~~ LU0uC0 0 1. EI D Z

52

Iz
a.

LU 0
LCU

-)J 00

N o w) O Z

0 0, z 0

F- 0

0 2 0
y- < ,).L

U J Hw uJ 2 rH

z z < L-;, P- o

<f <0 <~r w w

LU C. W 0

0 00 LJL L

53

CL 0
0Z

r~ 20 0

V Cl' U)

0 cf)

0 J cn C, >

C,)I) > 01U L U li LoA c. <
0 vim: io 0)

LL l
zc. I j I U
Cl) C M 54

Lii ci:

0L

"4t,-J U .11-

%c. LL.'. LU-

_ ow 6 w C

cl < LLI

wU CD< CDce

ZW

.J o ca

aw u C, o-

0 0

3 55

LUJ

0 < CL

Nj V.. w L

0w D
0 n3 0r, a: 0

LL C)

C01 LU I

Urn)

w 0

w U

3z Su mua<
P a uLU U.

< ..
.1

56j

C)) U. U. ,rc
o D-

w LLI -J

W~~ I l
u.. - JLj

(ALIJ.w--

C)) -,)

u.4 Lui __ (n-<.*

o t0 LI

L-; -J 0j C

*q L. <

LU- LU<C

WJ Z

U. ccU.cr ()).

LLOw wwwL

gum5 o

C.) E . JU)0 --

VWl C> U L- <(

< ccI I I I I

3 57

2) W

LLJ 0. z
0 0 0

z >

w :3 2

CDl
m : 0

UL i0 U Cl)
Dt F- w- u

< M

<00 0

2! LL 0 :0 u
</ .)>
U- LL -

0~ Z a:Uz C
c I Iu S2cc

> 0.

C

58

z

C)

H

LLI C C z

Lu wU 0 w

LL oj

Hi 0 0 >Zi

QLLLL
CL Hr IL !

0s 0 0 0 7 rF

>4 0- OC/ 2

LU H LL0 za)

00z

00 0 --W

< I -o X C U - -'0

ti LLJJ

1W 0 : l W0 C

m i z) D 0 oC
LL LJ u) : ,)W :

>U I. :EI .c .c

CCI

59

LCU

a 00- Z

nit - i c
> Z

17"~ ccc
o < C) w

rJ~2 L ~cr ,

0~ 0 Ul >9

D wU
0 D0 WU cc C

*~~ C) -j .9

- Q0g 0 Z-o< oi
0 Cd, DW r

LL Z 0
C)U J.u -J cc

L 0 zOM L

W: 2z zO P- o0PCI
Wi Ui O o 0 U) j w

a- I I)
ui u >wL

0uU LD L L
60lw

*LRA

I-rnl
1." r2

h.-,-vL LUI

0N LI_4
VJ 0 z1!ci < >

>. CD4 amA0

L UJ u-ou

1 I
.A.>)0 U

3r 61f)c)

Iu0

z

z
w
4

w

1-j

C0L

>uJ

00

0 0 w
wr CL)

-J w
0 U. 0 i x
-J w I- C. 0

Cm 0 0 f 0 0I 0 0

Cl)

62

C')

zz

0

L4L I mi Lw

U~ 1 0

< i UJ Z I

w ~A LL 0Z
0Z0 0F 4

(u)O 0 z I. W

a: zO* jjjcLLJui Z

0 It0

63

I-

0 0
LU 1-

LLYI 14..

LiI LMI

oL CL)
0 0

-JJ 0

4v64

CI0 C*

CJ

- _-

w~

CC.7
cicc

GEm 0

c~co

65-

L~CL
co LaJ

L~J

LL-J
L&J -J

0A
<I

LAJ0

66J

LLU

=LO >- cm
Lai C m, 0

LU C Z I.. EI

E ~1- -cm

LALU

26 LL. L

*U 0 0 0 l

67

C.,>

Oct~

I-3CD-

LAJ

0

COO .J -- om

co

Co D

-- r--

LUA

z LJ
-j

LbU

LU 0
LL-J

- L

LL-J

o L.

L1~ LU

too

a-a cma-

69

CL
o C

an I

6L'J

cnI CL

0~ 0pr
CD0

- -
CD5

cn-

cm, 0

70

reI- - t PA C4 r4 V-
Ic

Iu

-=

LiJ 0 CO

w co

_4 cn ~ ~ir N .~~I4 ~uICJu

LaJJ

Ii 0
0r pc- i jW-3.W 2 F

LI71

C)

I- <

LA-J
0~ 0--

-~ i 72

V

D <

- L..

LAA

_ c-- =

Li. z = C. C.-

._- >- v. >- t C.) C ..

,,., L-- < 0 = < _J =

0LA-

I- -

- LaI

73

I

zz

L&LJ zJ

z= L# -

=j > L - La

Ln .cJ LLJ a - U Z a-

d<' LL) L

. L-1 La.'

M LA

LA V)L/

>- V ck -= .
CN)

'I74

I--

C-) W~

LJ

Z~ 3 Ln &wJ

La UiJ== <.
cc L& < LL L#

E ~L'E

10 ~C CD --

cc CL u < CL a.a

IC.) 0 C.) CL) C. o-) 1.

SV) Vd) =

Ln~ m

75

C4-

-Cn ZA IS-

a -L1iI& JUf

u LaiJ

LIJ aj;W =M-t 7

C)L IJ CL. 0-

4:«< =

2 E -(/ 1~ V1 CL A- LLL

LLJ b-,
2E Z-)Lf.)z h LIJL

LL/,

76

Voo

C4.
L$L)

LIJ <-

~~ 0_

S - I. =OoL V-CAIAC LLJ
Cl LJ W>- a-.

CmD

LI.J L16J C

AdIA0. .

77

z L
<

z LLz

>- L&

LLLU

=r =~J~ = 0nLi

I uJ -J LiZ

_r L4L
W-~~ <d *L L

cc Li.J<

=S =-- <

0Y -
Lu =.<

E~ = 0rtD- u~ LU V
0n < < @0

78

L~La.

aco I LaL1 LIJ

=L Li 14

<oc
MLM- - LI

LL - 1~ 79

CA
C0

I--

zz

CAC

~LJ.J

0~ 80

CL.-

LLLJ
I.- L

-r I- C

-U CL. %.0

=, 4< C-r CIA C-L.

t-J ILM a-3

LL) -J C-7W

~LA L L.*I-

LAJ~ -j CL.V
0-% ,P 0"

V; Lf% C-)

CIO
9-r

9-i

81

CD

E

<

LL-J

LJJJ

cc LIL IJ

-Jo

C, z 082

ILI

CA,

C* z z

z z

LU =J
Z LJ6=

0&
C1-l V

CD-

.C) .' I

cc-

83

C0
C3,

-j -- -
C.D J

0.i
Nl--# C 0 - o V

I..< LLJ L &J= -

P 0 0 > - - f 0
!E 0 00 CD000n

84ZLL

z z

Z z

LA-J

COz D A L&J

W9Ez
~~ C D

cc~ z

z LAz

. >- S 0 0

85

Lie) z

LA) - I-

o z -
I-cLU -LaiLa
-) '-, O > L,, Z

oZ 1-- 0I - 0

z <A
C,,C. LiJ)

s a)
LI- Liu> - ~ -~0 O

00

86

CI

LnU

z 0m

2 LAU

o ~ L~ LUL
~ z - M.

-m _jL

- -r rCL.

~ E87

LO0 -4 LO

Ln C) L% Ln-e

Icu-

CL-

cc I-.
LUJ

LU -

LLJ l
ujLU) (j I- -

0wpr

LajL +j
C"0

88

IcI
LiI

LLU

I 89

I
I
I

APP'rNI)IX ~ - Cli ART INTEGRATING PDSS INTO ARMY ACQUISITION POLICY

I
I
I
I

-- -

F A0-AI03 485 AIR FORiCE LOISTICS COMMANO WRIGHT-PATTERSON AFB 044 F/G 5/1

AUG 79

UICLASSIFtFD NEh,4hE E E
EE-hEmhhhEEEE

mEmhEEEEshEmhI
EohEEEEEEmhhhI
EEEEEmhhEmhEEI

PHASE CONCEPTUAL

RDF PROGRAM - - i.- - -_____ -__-

ACAIGORY

HARDWARE

CONFIGURATION EXPERIMENALPRO TTYPEBR(AD BOARD

iRESQRE REQUIREMENTS BASELINE

A - II] I

HAYO RIAt AP AC, O

GPO HA

OPERATIONAL4
TESTER

"I IN

COMBAT A4
DEVELOPER ITf

MAIER IUL AMIIAC A T Es:

DEVELOPER ILN11P TIOK

LOGI STICIAN P

HODA fF

TESTER PIl PARIGI PLAN

COMBAT INPUT:

6RH IRAT OT INP)

DF-VELOPLR ILLSIIHII 'AA

M' AND OPt RA 7I PAN IOAt RASC 9H PR
MATERIEL PRW IPARCIN

DLVE LOPER f COSTsOSII
FSIM I gIS 1111

I I IC'l I

___ PC ANN'S PI ANNINI NI

f::Z ::J I V ICCVI

LIFE CYCLE SYSTEM MANAGEMENT MODEL

VAI IOU FULL-SCMt. DE

AUVA?&tUD UE'JtLUPtAEN PROIOTYPE/BHASSBOARD IENGI NEER ING LIEVEWDP

PRotoTYPE BASELINE -:.* C/PIBASELINE.

44440

I:MAIP I ii

APMII" 43
N? 60N

OF~U It I

If VA:

12 14111AL
IIIL YI:I 111 IM Ti

IJIII,4 NI A AWAMI, FORA UFI I MF Ut NT
PI. a..N(R, 0" A IMF F AA)

II.

IMI fII AI IV.IN _ 11 57

11,JPOI iI %I1,N 1

i~~~dI SI , I

3 - lU II) I I ACT WR SUIPN I MMI MI M Of 1 INITIA

I.R MAN

_______- j- IRI , FO

4MJ -A)___ _ %3_ E11NTRI
:tim N

PNENT

NT PROOTYPEINITIAL PRODUCTION ITEMS
NT PROOTYPE(IF WARRANTED)

:0 ~ 7 77...INTEGRAIN TESTAND TRANSITION I

D R 1DSARC

7 * DCP
7 DC

..RVAAROA
69 9

ASARCw. 0

AP7 A

65 APPROVALA

DEAPR I LM 0 6 DIDRAFT P

APPPRO 9 AL

IPCEE

D 709

PRER 7ECVTAT WR
OT. ULL SCP PRDCTO

INTA PRO PROD

0 RE A IA L'R TR E

C0P~ LO

ED~~~~ IOR uLS A
DOI II 0 N O O

TES DEG RTPORT

LIMTE 74 D64

NPRUPRARE PLACNTRC OE R

76 ,.FLL L PODUC O

TES SEINTEORANP~AN NTEDRATE PSSI ACIVTY
UMMAR MIhAA T3 SA. IPPRPL SNAN D DA40O

FIRS

EDITION'ETRFI

APPR VFIRST
EDITION RESPUBDENT UNIT
TMI ANDD TRAINTOE CT

PRODUCTION AND DEPLOYMENT

FULL PRODUCTION ITEMS

*OPERATiONAL BASEL!N

FO NEW MTL
I ,D IFICA TiON

TccONTIN TC

AIle# Ci cy OBSOLETE'
WED DISPOSAL

MODIFICATION

MENT

10 GMMIF BASE LINF S~T10R. i

f : - -B~uS - -V -A -I - - - - - I- - -

I ZFMPLO/F.E 1

t 06 j 0 INI0
lo 1,4...

M-RI

14NINN

pot
UPLO-E. -.%

- ~.-.

PROCEEDINGS OF THE SOFTWARE WORKSHOP

JOINT LOGISTICS COMMANDERS

JOINT POLICY COORDINATING GROUP ON COMPUTER RESOURCE MANAGEMENT

MONTEREY, CA, 2-5 APRIL 1979

Report of the Panel on

SOFTWARE DOCUMENTATION

30 May 1979

Chairman: Antonia D. Schuman
TRW Inc.

Co-Chairman: Paul Shrbalin
I NAVELEX

i
I
I
I

I
OBJECTIVE

The assigned task of this panel was "to establish requirements for the minimization
and standardization of computer software documentation as applied to the Department
of Defense.

Considerations should include:

I. Purposes of documentation

2. Content and detail required

3. Evaluation of current documentation standards

4. Acceptance criteria for documentation

5. Long-range plan to generate DOD standard for software documentation."

The goal of the 3-day workshop in Monterey was to find a way to:

1. Reduce, combine, and standardize the Government's software documentation
directives, regulations, standards, specifications, DIDs, and instructions that
are imposed on industry

2. Make the software documentation produced by industry under Government
contracts useful at. useable. Eliminate or streamline the present massive and
inconsistent set required.

SCOPE

The problem, as expressed by the JLC-JPCG-CRM, was the proliferation of
conflicting standards, specifications, instructions, and regulations for software
documentation that have been issued by the different services. The systems for
consideration were principally embedded rather than management information systems
(MIS). The scope of our efforts included all documentation produced throughout a
system's life cycle, starting with the MENS (ROC, SONS) and proceeding through
development and test into the maintenance phase. The documentation discussed was not
limited to those documents produced under contract, and included the CRISP (CRMP,
CRLCMP) and nondeliverables. The panel decided not to consider the standardization of
the CRISP, CRMP, and CRLCMP because they are Government-produced documents.

APPROACH

jThe panel began its work by hearing presentations by each of the services on the
documentation used. Considerable discussion accompanied these presentations, which
highlighted many of the differences in terminology and requirements.

93

~ . __________________

From these discussions, t he panel decided that several issues should be addressed:

1. What documents are needed?

2. When, in the life cycle, are they needed?

3. How can common rules be enforced?

A tentative list of documents was generated by the entire panel, which then broke
into four subpanels to consider which documents are needed and when:

1. Development

2. Test

3. Maintenance

4. Validation and Verification.

Each subpanel was charged with answering six questions about each document and, if
time permitted, writing a description of the document. The questions were:

I. Who needs the document?

2. What purpose does it serve?

3. What is the relationship of the document to other documents?

4. Content and format?

5. Duration?

6. Applicability?

Finally, the entire panel met to produce the recommendations and determine the
future course of action.

DISCUSSION

The issues raised by panel members during the open discussion included the
following (in no particular order):

1. Definitions and terminology must be standardized.

2. There should be a common set of standards for software documentation,
including MIS, C2, embedded, training, and ATE. The matter of acquisition
regulations should not be a factor in the format, content, or terminology used.

3. Systems bought under warranty contracts must have delivered documentation.

94

I

4. Firmware is to be treated and documented as software.

5. We need a standard set of documents to describe the change process (trouble
reports, system enhancements).

6. The ultimate maintainer of the software must have a useful set of
documentation.

7. We need fewer, more complete documents.

8. What is CPCI, how are CPCIs determined, is it realistic to develop
documentation based on CPCI?

9. What should be the scope of the application of the recommended standards?
The panel was unable to decide whether they apply only to tactical systems or
should apply to all DOD software, regardless of its application.

10. When in the life cycle are various documents needed? This issue was
unresolvable, in part due to the lack of complete definition of the contents of
each document and the belief of the panel that the schedule or documentation
completion was more properly within the scope of the Acquisition Panel.

The serious issue of enforcement became a major topic of discussion during the
entire workshop. The basic premise of MIL-STD-490 was held to be valid. However, 490,
even as modified by 483, only covers specification and omits such things as user manuals.

It was felt by all participants that the best parts of each of the present specs be
conmined when the final MIL-Spec (or MIL-H) is written. The most important of these
aire:

1. DOD Standard 7935.1, "Automated Data Systems Documentation Standards"

2. MIL-STD-490

3. MIL-STD-483 (USAF)

4. MIL-STD-1679 (Navy)

5. MIL-STD-1521 (USAF).

The total set of references is presented in Appendix 2. Finally, the plethora of
DIDs must be reduced and combined into a simple, uniform set.

The documents proposed by the panel are meant to constitute the complete set of
software-related documents for tactical embedded computer systems within DOD.
Individual project managers will be free to use subsets as appropriate foe their projects,
but the additional software-related documents as part of the RFP should be forbidden.
The issue of whether the master list should be defined in a MIL-S or a MIL-H was one
that divided the panel, with the key point being the modifiability of the controlling
document.

95

U

V"W

RECOMMENDATIONS

The panel recommended that the existence of other committees dealing with the
same problem be determined and our efforts be coordinated with theirs. In addition, the
work of the Acquisition Panel must be continued in order to place the set of
recommended documents in the software life cycle.

A set of uniform DOD software documentation standards should be developed in

four steps as follows:

I. Identify all documents needed for software development.

2. Modify MIL-STD-490 as follows:

a. Move A, B5, C5 specification instructions from MIL-STD-483 to
M IL-STD-490

b. Enhance existing descriptions.

3. Create new MIL-STD to tie all documents together; tie to 490/483 and identify
format and contents of those documents not in 490/483.

4. Attack DID problem. Come up with one set for documents listed in 1. above.

At a subsequent meeting of this panel on 2, 3 May 1979, their recommendations
were as follows:

1. The list of documents (Appendix 3) needed for software development is
intended to be used as a recommended list for which items could not be
substituted.

2. The form of the document description, format, and definition should be
contained in two MIL-STDs (e.g., 490 and the new standard) and supplemented
by DIDs.

3. These two MIL-STDs are intended to be documentation standards and act as
the mechanism for requiring the use of standard documents such as procuring
agencies.

4. The mechanism for requiring use of the MIL-STDs is the contract CDRL.

5. The mechanism for superseding existing standards and descriptions is new DIDs.

Using the descriptions of each proposed document (Appendix 3), the panel
recommended that the JLC fund a task to complete Steps 2, 3, and 4 of our original
recommendation. In addition, it recommended that the task:

1. Include a review of MIL-STD 1679 (Navy) and MIL-S-52779 in order to identify
the changes required to make them compatible with our list of documents

96

2. Make necessary revisions to MIL-STD 1521 'so that it includes the documents to
be reviewed and how the review should be performed

3. Further identify potential problems caused by the format contained in
MLL-STD 490.

It is further recommended that this task be accomplished through a contract with a
private contractor (excluding those contractors with members on the panel) and that a
funded steering committee made up of members of this panel be appointed to write the
SOW, monitor task progress, and review the results. The contract should be awarded
around January 1980 with a period of performance of 6 months and a ceiling cost of
$99,000.

Finally, the JLG should begin laying the ground work to ensure DOD-wide
acceptance of the new standards.

U 97

APPENDIX 1 - PARTICIPANTS

I

I
I
I
I
I
I

APPENDIX I - PARTICIPANTS

Chairman: Antonia D. Schuman, TRW

Co-Chairman: Paul Shebalin, NAVELEX

Subpaniels

1. Development

C hairman: Russell Eyres, NAVMAT
Lloyd Searle, Planning Analysis Research Institute
Gene Sydow, Litton DS)
Grace Dugas, ESD (USAF)
Marlene Hlazle, MITRE Corporation
Newnam Thompson, System Development Corporation

2. erst

Chairman: Pat Ward, USATECOM (Army)
George Weekly, USAF
Kurt Fischer, Computer Sciences Corporation
David Lee, NAVMAT

'h,i ir.nan: Verlon Duncan, Ogden ALC (USAF)
Lee Stewart, MIRADCOM (Army)
)on Wagus, Computer Systems Command (Army)

Bob Sauer, Marine Corps Tactical Systems Supply Activity
Harry Jennings, Warner Robins ALC (USAF)
William Egan, Pacific Missile Test Center (Navy)

4. \aadation

(C.'hairnan: Paul Shebalin, NAVELEX
Mike Landes, RADC (USAF)
Gene Sievert, Teledyne Brown Engineering

I
I

!9

I1

I
i
I

APPENDIX 2 - SOFTWARE DOCUMENTATION REFERENCES

I
I
I

I

APPENDIX 2 - SOFTWARE DOCUMENTATION REFERENCES

1. DODI 5010.12 (December 1968)
"Management of Technical Data"

2. DOD Standard 7935.1-S (September 1977)
"Automated Data Systems Documentation Standards"

3. MIL-STD-490 (May 1972)
"Specification Practices"

4. MIL-STD-480 (October 1978)
"Configuration Control - Engineering Changes, Derivations and Waivers"

5. MIL-STD-961 (March 1977)
"Outline of Forms and Instructions for the Preparation of Specifications and
Associated Documents"

Air Force

6. AFR 800-14, Vol. 11 (September 1975)
"Acquisition and Support Procedures for Computer Resources in Systems"

7. MIL-STD-483 (USAF) (June 1971)
"Configuration Management Practices for Systems, Equipment and Computer
Software"

8. MIiL-STD-1521A (USAF) (June 1976)
"Technical Reviews and Audits for Systems, Equipments and Computer Programs"

9. AFR 310-1 (June 1969)
"Management of Contractor Data"

10. AFSC/AFLC Manual 375-7 (March 1971)
Configuration Management for Systems, Equipment, Munitions, and Computer
Programs"

Navy

11. MIL-STD-1679 (Navy) (December 1978)
"Weapon System Software Development"

12. SECNAVINST 3560.1 (August 1974)
Tactical Digital System Documentation Standards"

13. NAVORD WS-8506 (November 1971)
"Requirements for Digital Computer Program Documentation"

101

I

14. SECNAVINST 5233.1A, CI (Augus 1974)

"Department of the Navy Automated Data System Documentation Standards"

Army

15. USACSC Manual 18-100, C2 (October 1974)
"Tactical Automatic Data Processing Systems Development, Maintenance and
Documentation Standards"

DIDs

Air Force
Navy

102

I
I
I
I
I
I

APPENDIX 3- DESCRIPTIVE PARAGRAPHS

I
I
I
I
3
I
I
I
1

--

I

APPENDIX 3 - DESCRIPTIVE PARAGRAPHS

(CRISP)

Interface Documents

Computer Program Development Plan

System Specification

Software Configuration Management Plan

Principles of Operation

Computer Program Requirements Specification

Preliminary Program Design Specification

Detailed Program Design Specification

Computer Program Product Specification

Version Description Document

Data Base Specification

Positional/Station Handbook

Computer Operator's Manual

S/W Maintenance/Program mer's Manual

Command Staff Manual

Diagnostics Manual

ISoftware QA Plan

System/C PCI Test Plan

System/CPCI Test Specification

ISystem/CPCI Test Procedures

Syste m/CPCI Test Report

I Trouble Report

103,

INTERFACE DESIGN SPECIFICATION

The purpose of this specification is to establish a Jet of requirements for the design
determinations of the interdigital processor interfaces in the areas of tactical digital
systems. It provides a detailed logical description of all data units, messages, buffer
size, and use of all control signals for defining interdigital processor communication
conventions such as enable/disable communications between the digital processors of the
two specific systems. It also assigns control and responsibility for every control signal
and data item passed between the interfacing systems.

104

INTERFACE CONTROL DOCUMENT

It was proposed that a second document be prepared, called an Interface Control
Document, which would be required regardless of the existence of currently implemented
interfaces. This document would be the basis for determining if other systems should
interoperate with the subject systems and for defining the requirements to achieve that
interoperability. It would describe the function% and formats necessary for any future
system to be able to interface as well as the hardware and software interface
requirements to enable any future systems to be easily interfaced with the existing
syste m.

I

1 105

I

COMPUTER PROGRAM DEVELOPMENT PLAN

The Computer Program Development Plan (CPDP) is a document in which the
contractor describes his plans for the management and development of the computer
programs and associated documentation that he needs for the completion of the contract;
this may include management of support software such as simulations and analysis tools,
as well as operational programs and automatic test equipment programs. The CPDP
addresses, summarizes, or references the management issues in a single document. The
CPDP is started at RFP early in the life cycle, and is developed incrementally during the
early stages of the software development cycle. Since the CPDP provides for the plans
only, it is possible to complete it early. Because the final version of the CPDP is
detailed to the lowest possible level, much of the information is not available when the
document is initiated. At each stage of the life cycle, the document is fleshed out to the
greatest extent possible as it becomes appropriate to fill in details. At 30 or 90 days
after contract award (depending on the nature of the project), the CPDP should be
complete. It is the document that provides a vehicle for outlining how the contractor
will manage the software engineering elements of the requirements. The CPDP should
be put on contract to serve as a base for assuring that the contractor does what he said.
The DIDs describing the CPDP details are intended to be tailored for each application.

106

SYSTEM/SEGMENT SPECIFICATION

The system/segment specification serves two main purposes. First, it documents
the functional and performance requirements defined for the system and/or segment as a
result of studies of alternative system concepts. Second, after review and approval, it
serves the configuration manager as the documentary tool to establish and control the
functional baseline for the system and/or segment throughout the system acquisition
cycle.

Throughout the acquisition process, up to the production phase, the system/segment
specification provides the requirements for top-level testing. During the production and
deployment phase and in post-deployment maintenance, the system/segment
specification continues to be the controlled functional baseline, and is kept up-to-date to
reflect approved system enhancements and modifications.

At the discretion of the program manager, the specifications may be divided into
one volume containing general requirements common to all system segments, plus an
aidditional volume for each system segment. In either case, the system will be defined by
a single specification comprised of one or more volumes. This specification will contain
the following elements:

1. Identification of the general system configuration in terms of system segments
and/or functional areas

2.Definition of performance requirements and constraints for the system as a
whole, and allocations of those to system segments and/or functional areas

Definitions of functional and physical interfaces between the system and
external systems and between all functional areas within the system

4. Descriptions of the organizational and operational relationships relevant to the
system and/or system segments

5. Descriptions of facilities, maintenance, personnel, and training concepts

6. Requirements for system /segm ent-level testing, including methods f or
verifying system and/or segment performance.

The system/segment specification will be expanded during the demonstration and
vali dat ion phase to include lists of equipment and computer program configuration items,
a specification tree, and definition of functional interfaces among system segment-,

and/or functional areas.

107

SOFTW ARE CONFIGURATION MANAGEMENT PLAN

The Software Configuration Management Plan (SCMP) describes the contractor's
internal computer software configuration management organizationi; the responsibilities
of the members; the relationship among the several offices/divisions; the policies and
procedures for identifying the documentation of the functional and physical
characteristics of configuration items required by the contract; procedures for
controlling changes to configuration items during the development; procedures for
recording and reporting change-processing implementation status; and the external
relationships required to maintain total system compatibility.

The SCMP provides the contractor the means to consolidate all policies,
procedures, organizational descriptions, resources, and schedules relating to software
configuration management in one document. The SCMP provides the procuring activity
with detailed knowledge of the contractor's configuration management. Through the
SCMP, the procuring activity can monitor the contractor's application of configuration
management principles in conformance with standards invoked in the contract.

108

PRINCIPLES OF OPERATION DOCUMENT

The purpose of the Principles of Operation Document is to provide explicit
description of the way in which the data processing system will appear to its users and
the way in which it will interact with them. It also describes assumptions about how the
user will use the system to perform his operational tasks. It provides a vehicle for
concurrence abouit the appearance and interaction of the system among the user,
procuring agency, and developer. It is derived from: System Operational Concept,
System Specification, CI and CPCI identification, knowledge of current operations and
environment, etc. It provides guidance for development of hardware and software
requirements and positional handbooks.

109

COMPUTER PROGRAM REQUIREMENTS SPECIFICATION

The Computer Program Requirements Specification (CPRS) describes the
operational and functional requirements of a computer program configuraon item
(CPCI) necessary for the design, test, and maintenance of the CPCI. It identifies tbe
relationship of the CPCI to equipment and other CPCIs. It also identifies other
constraints and standards in accordance with which the CPCI is to be designed and
developed. The CPRS contains requirements rather than design and is reviewed before
PDR. The CPRS is derived from the system/segment specification, principles of
operation, hardware configuration and architecture, etc.; it is the primary source for the
computer program product specification. Issues associated with the CPRS are the
appropriate level of detail, the overlap with interface and data base specifications, and
the differentiation between requirements and design.

110

fI

PROGRAM DESIGN REVIEW DOCUMENT

This is a performance-level specification that states functional performance
requirements including program sizing, internal interfacing, data base constructs, linkage
and sequencing of program parts, functional flow block diagrams, etc. This document
contains specific program performance requirements for the total system or CPCI
software, including inputs, processing, outputs, special requirements, and interfaces to
intersystem functions/devices/processes not directly addressed by the system under
development. The PDR document is the written vehicle which establishes performance
targets and agreed upon system decomposition/partitioning which occurs during FSED,
primarily at successful completion of PDR. The document is the outline for the PDR
process and should contain:

1. Computer program functional flow

2. Storage allocation/timing allocation

3. Control function description

4. Program structure

5. Module identification and description

6. Security requirements and access controls

7. Development facility and tools to be used

8. Global data base architecture

9. Critical timing requirement

10. Functional traceability matrix.

i
I

111I

CRITICAL DESIGN REVIEW DOCUMENT

This is a design-level specification that states design of program(s), subprogram(s),
module(s), and subroutine(s) in adequate detail to support coding of the respective
modules. This document contains all of the performance objectives of the PDR
document plus updated details of timing/sizing resource allocation, module development
scheduling, and data formats. The CDR document is the "code to" design specification,
which when approved at CDR will go into configuration control and serve as the
documented guidance for implementation of programs, subprogram modules, etc. The
document is the outline for the critical design review and should contain all PDR
document subjects (by reference or inclusion) and the following:

1. Local data design

2. Global data references

3. Subprogram/ module crops reference

4. Detail logic description(s)

5. Internal control structure

6. Interaction conditions

7. Register and index usage

8. Calling sequences

9. Traceability matrix

10. Updated PDR data, if applicable.

112

COMPUTER PROGRAM PRODUCT SPECIFIC ATIO N

The Computer Program Product Specification documents the detailed technical
description of the CPCI to be delivered under the terms of the contract.

The Computer Program Product Specification is derived from the Computer
Progra m Development Specification and (if available) the Interface Design
Specification. The Computer Program Product Specification is a baseline document, and
is published at the end of the development phase. This specification shall specify the
design description of the CPCI based upon the functional, performance, interface, and
design requirements defined in the Computer Program Development Specification and
the Interf ace Design Specification and shall contain all of the information in both the
CDR and PDR documents by inclusion or reference.

This specification shall be published after qualification testing just prior to product
delivery, and shall serve as the basic configuration control tool for the life cycle of the
program.

11

VERSION DESCRIPTION DOCUMENT

The Version Description Document (VDD) is the vehicle for informing its recipients
of the complete configuration identification of a CPCI as it is constituted on a selected
medium (tape disc, etc.) at the time of CPCI release to a user agency. The VDD provides
explicit information regarding:

1. Identification of all elements (computer program components or equivalent)
that collectively make up the CPCI.

2. Identification of all elements that were employed in the generation of the
subject CPCI; this includes data that was used in the compilation of the object
state, support software such as the compiler or assembler, and any other
software elements that were used in the CPCI generation process but are not
integral to the CPCI.

3. Description, in operational terms, of the changes that have been implemented
in the release; these are changes from the previous release. For an initial
release, this would be a summary of all ECPs that have been incorporated into
the CPCI during its development leading up to its release.

114

DATA BASE SPECIFICA17N

The Data Base Specification describes and identifies all data in each data base. It
specifies the system or systems using the data base, the storage requirements, and the
physical description and organization of the data base. it references all support
programs available for handling the data base. Labeling conventions are specified and
the instructions for updating or modifying the data are provided. Each file, table, and
item is described.

115

POSITIONAL/STATION/TACTICAL OPERATOR'S MANUAL

The purpose of this manual is to provide operating procedures to an operator in
relation to a particular position or station within, or as a part of, a larger
computer-based tactical system. It will focus upon the specific equipment configuration
and information processing functions carried out at that particular position/station and
will concentrate on the following:

1. Data formats

2. Equipment functions

3. Procedures to be followed

4. Codes utilized

5. Electrical interfaces

6. Failure modes

7. Function/action controls

8. Display organization and presentation.

Individual positions/stations may include, as examples, the air defense system
display console, tactical fire direction terminal, timesharing system terminal, message
I/O device, etc. Key ingredients of the manual deal with equipment operation and
procedures to initiate, receive, and process the flow of information for a particular
station/position within the system.

116

COMPUTER OPERATOR'S MANUAL

The operator's manual deals primarily with information required by the computer
operator and supervisors engaged in system operation. The manual addresses system
monitoring and actions necessary to commence and sustain system operation and
reactions required to overcome failures encountered during processing.

The purpose of this manual is to provide the computer operator with instructions
regarding the basic procedures for monitoring and operating the various equipments
comprising the system, including the central processor, computer terminals, and other
ancillary components. The manual will also provide procedural instructions for the
following actions:

1. System start up/initiation

2. Testing

3. Restart after failure

4. Recovery from partial or component failure

5. Hardware reconfiguration

6. Maintenance and diagnosis of performance or error conditions

7. Logging operational events

8. Overall system management

9. Proper manipulation and interpretation of switches/displays/keys/controls.

11

SOFTWARE MAINTENANCE/PROGRAMMER'S PROCEDURES M ANU AL

The Software Maintenance/Programmer's Procedures Manual is used by a limited
number of personnel assigned to the critical task of generating and maintaining the
computer program library of the facility. The system generation/maintenance task is
assigned to highly qualified systems/programmer personnel who can accept the
responsibility for a closely monitored, carefully administered system
regeneration/software maintenance cycle.

The Software Maintenance/Programmer's Procedures Manual describes procedures,
input data structures, and control mechanisms used to generate or to modify computer
software. It is intended to supplement the Programmer's Reference Manual, assumes the
availability of compiled/assembled programs, and introduces the programmer to a system
that describes the procedures for incorporating tested software into an operational
library system or for introducing changes to data/instructions contained within existing
library programs. Procedures for uniquely identifying programs and sequencing them
properly into the library for future recall are also included in the document. Once this
revised program has been incorporated into the library system, it can be loaded for
testing, or additional modification, correction, or operational use.

118

COMMAND/STAFF MANUAL

This manual is provided to interested military managers and staff officers who have
a requirement to understand, in general terms, how the system functions, whether they
are responsible for its operation or concerned with utilizing the products of its operation
for mission accomplishment.

The purpose of the Command/Staff Manual is to provide an understanding, in
general terms, of the purpose, scope, and functions performed by system
hard ware/so ftware operating in concert. This manual will orient management and staff
personnel with the overall system design capability and with the role it plays in the flow
of information in a military environment. This manual must fulfill the critical objective
of conveying system architecture to the generalist (laymen) who need not become
familiar with highly detailed technical parameters, but with the overall contribution of a
particular system to mission accomplishment.

This manual will generally be concerned with conveying the purpose of the system
and its interaction with other existing systems; the performance of systems' functions
with respect to hardware configuration, processes performed, and military utility; and
lastly, the presentation in nontechnical terminology of the overall function of the
system. Material presented must be sufficient to familiarize staff officers having a
direct relationship with the system through billet assignment with the nature of the
information or results produced by the system during normal operation, as well as
familiarize them with the means by which this information is produced (i.e., sources and
processes).

119

MAINTENANCE AND DIAGNOSTIC FAULT CATAL3G

The Maintenance and Diagnostic Fault Catalog contains the information necessary
to isolate a hardware malfunction in a computer-based system to the lowest replaceable
unit. It lists the stop numbers or error messages that are presented to the operator.
These numbers (or messages) refer to one or more potentially faulty units which are
identified by card number, corrector numbers, part number, or other nomenclature.

The Maintenance and Diagnostic Fault Catalog includes instructions for running the
maintenance and diagnostic programs and for isolating the truly malfunctioning unit from
a list of possibles.

120

SOFTWARE QUALITY ASSURANCE PLAN

The Software Quality Assurance (SQA) Plan describes the organization and system
of the contractor to assure that software and documentation delivered under the
contract complies with the requirements of the contract. The SQA Plan shall be oriented
toward the specification, design, and development of software and documentation that is
planned and developed in consonance with the contractor's other administrative and
technical programs.

The SQA Plan defines how the contractor will implement the quality assurance
program as applied to a software project. It provides the Government with detailed
knowledge of the contractor's SQA program and may be used to monitor the SQA
program, as implemented.

121

TEST PLAN

This document identities and describes the tests that are proposed by the
development contractor, the independent test contractor, or the Government test agency
responsible for system testing. Among its purposes are to describe the tests in
relationship to other related test programs, secure the necessary approval, control
redundancy, and ensure that th~e necessary facilities, instrumentation, personnel, and test
configurations will be availabIp when needed. It also forms the basis for detailed test
design, execution, and evaluati n

The format for a Test Plan will be consistent whether it was written for a system,
subsystem CPCI, or even a module level test, but the scope and objectives of a particular
plan will reflect the appropriate purpose of this test. The Test Plan shall identify all
other tests that will be satisfactorily completed prior to the initiation of this test, and
shall have sufficient background information, test philosophy, and concept of testing so
that the detailed test requirements/specification document can unambiguously
implement this plan.

The Test Plans will include at least the following general topics, and any other
required to describe the specific system under test: scope, applicable documents, sys3tem
idification, prerequisite testing, objectives, quaifi cation requirements, criteria,
testing methodologies, assumptions, limitations and constraints, external interfaces,
schedule, location, responsibilities, and test controls.

122

TEST SPECIFIC ATION/REQUIREMENTS

The Test Specification is a descriptive implementation of the appropriate Test Plan
and is the document in which the basic test criteria are identified and the basic method
to be used in the specific test is explained. The Test Specification will ensure that the
necessary facilities, instrumentation, personnel, and test configuration are identified and
will be available when needed and be the basis for drafting the detailed test procedures.

The formats of Test Specifications documents will be identical but the content will
vary, depending upon the type of Test Plan that this Test Specification is implementing,
i.e., system, sub~system, CPCI, or module.

The Test Specification in general is an event-oriented description of the test to be
performed and is an expansion of the Government-approved Test Plan. The Test
Specification should address the following general topics and any other required to
describe the specific test being specified: scope, applicable documents, applicable
prerequisite testing, personnel, facilities, equipment, support software, test case
definitions, matrix of test cases to requirements, inputs, required accuracies, expected
output, data collection method, error reporting, timing requirements, interface,
degradation, and schedule.

123

TEST PROCEDURES

The Test Procedures provide the detailed instructions for the execution of a test.
The procedures are developed from the Test Specifications, Test Plans, and relevant
design documents. The procedures will specify the test sequence of events and
step-by-step operator actions. It shall describe the total equipment, manpower, and
supporting documentation required to execute the tests. The Test Procedures should
address the following general topics and others required to describe the specific
procedures for this item: applicable documents, prerequisite testing, facilities,
equipment, equipment initialization, support initialization, personnel stationing, data
recording, safety precaution, error reporting, and test execution management.

124

TEST REPORT

The purpose of the Test Report is to detail the results of the executed test. The
Test Report will describe the purpose and nature of test and describe in detail any
deviations from the Test Specification or procedures and will compare the test results
with the expected output and requirement being tested. The test results should address
the following general topics and other appropriate topics reflected in the Test Plan or
Test Specification: introduction, applicable documents, summary, test objectives, test
configuration, test deviations, matrix of test results vs. requirements, discrepancies of
test item, evaluation criteria and analysis, and the plan for correction of deficiencies.

125

TROUBLE REPORT

The Trouble Report is an information format that consists of identification data,
problem descriptions, problem analysis, recommended actions, and corrective actions.
Identification data identifies the field/test organization that discovered the problem, the
system identification, the program identification, the date of report generation, the
personnel who discovered or who can add information about the problem, and a contact
poi nt.

The problem description identifies the circumstances/environment when the
problem was discovered, a description of the problem symptoms, the field operator's
estimate of problem cause, any work-around problem definition actions taken and their
results,, and whatever data can be provided by the user to assist the
maintenance/development activity in problem reproduction, analysis, and correction.
Program analysis is a verification of the problems, a description of the cause, the impact
of the problem on the software/systems, concluding impacts and identification, including
contact point of the analyst. The recommended action describes the proposed corrective
action, provides an estimate of the resources to implement the recommended action, and
provides the person/authority granting the approval /disapproval with dates and signatures.

The action taken is a description of the actions taken to correct the problem, any
pertinent information describing the implementation process, and a statement
of/reference to the level of verification testing performed. The implementing
activity/person is identified with dates and contact points as is the approving authority
for the release of the correction.

The purpose of the Trouble Report is to provide a vehicle for field-user personnel
and test personnel to record problem descriptions/symptoms and to provide the
maintenane/development personnel with a means of describing analysis and corrective
actions. The Trouble Report triggers a change process under configuration management
control and is a component of a larger change process.

126

II

PROCEEDINGS OF THE SOFTWARE WORKSHOP

JOINT LOGISTICS COMMANDERS

JOINT POLICY COORDINATING GROUP ON COMPUTER RESOURCE MANAGEMENT

MONTEREY, CA, 2-5 APRIL 1979

Report of the Panel on

STANDARDS FOR SOFTWARE QUALITY

Chairman: Robert Dunn
ITT Avionics Division

j Co-Chairman: Richard Maher
TRW DSSG

1
I

OBJECTIVES

1. General

The panel's objectives were to define the content, to the level of detail practicable,
of a set of documents that would establish expectations of software quality assurance
programs useful to all three services. As will be seen in "Discussions," that set was
defined to include:

1. Standard
2. DID for a software QA plan
3. Handbook
4. Guidebook.

In addition to these, other DIDs and an explanation of terms used in the field of
software QA were also considered.

Each section of this report contains a paragraph on each of the members of the set.

2. Standard

Complete updating of existing draft revision of MIL-S-52779, dated 21 March 1979,
with intent to secure triservices endorsement for consideration as a DOD-level standard.

3. DID for QA Plan

Define or develop a Data Item Description (DID) that would be in full compliance
with the recommended Software Quality Assurance MIL-S-52779 as revised by the entire
panel.

4. Handbook

Develop an approach, outline, and format for a Quality Assurance Handbook in
support of the Standard.

5. Guidebook

Discuss the merits of developing a DOD Guidebook for Software Quality Assurance
and the contents thereof.

SCOPE

i. General

A single document, MIL-S-52779 (AD), enjoys considerable currency in all three
services as a software QA standard. Nevertheless, it has not been considered entirely
acceptable by all. It has eluded status as a triservice standard since its original 1974
publication, despite guidebooks published by both ASD and ESD, a pamphlet published by
SAMSO, and a DID by NOSC, all referencing and supporting MIL-S-52779. In a sense
competitive with, but not fundamentally inimical to, MIL-S-52779 is MIL-STD-1679
(NAVY) ("Weapon Systems Software Development"), which covers the elements of a QA
program. Also, AF Regulation 800-14 ("Acquisition and Support Procedures for
Computer Resources in Systems") may be modified to reflect the need for a QA program.

127

In brief, although the services nearly had a de facto triservice standard, there was
none, with the consequence that there was no single way of fashioning a QA plan or
explaining the implementation of one.

The panel restricted its interest to software embedded in weapons systems and
excluded other software (e.g., EDP or computer-aided design). The panel did not,
however, exclude software used directly in support of embedded software. Although, as
noted by H. Tzudiker, chairman of QCIC-0001, MIL-S-52779 was engineered to assure its
applicability to all kinds of software, the panel did not discuss it except within the scope
of weapons systems.

In its discussions, the panel deliberately avoided any definitions of software QA
activities tied to specific development and maintenance methodologies, to enable
near-term triservice acceptance.

2. Standard

Areas considered included both assessment of other existing documentation
pertinent to software quality assurance and the possible impacts to activities of other
panels and subpanels. Consideration of firmware, while included in MIL-S-52779, was
excluded from panel activities to the extent that no attempt was made to describe or
define the term within the text of the document.

3. DID for QA Plan

An important part of MIL-S-52779 is the requirement that a Software Quality
Assurance Plan (i.e., "the plan") be written and implemented by the software contractor.
In order that such a Plan, if specified as a deliverable, be included in a Contract Data
Deliverable List (CDDL) and to provide more specific information about the format and
content of such a Plan, a DID compatible with MIL-S-52779 is required.

4. Handbook

DOD plant representatives and DCASR personnel have had a difficult time in
evaluating contractor software QA plans, implementing QA programs, and monitoring
results. This has been due in part to lack of well-defined and consistent requirements,
differences in approaches of various DOD services programs, and availability of
experienced DOD perso 4nel. The situation has been further aggravated by software QA
personnel guidance and training insufficiencies. The issuance of MIL-S-52779 will
establish a solid, consistent software QA requirements baseline, but will require a
handboox to assist government personnel in evaluating plans and establishing/monitoring
the resultant in-plant QA programs. The task of the QA Handbook Subpanel was to
review each requirement of MIL-S-52779 (as modified at this conference) and determine
how the handbook could provide the necessary interpretation, application, and evaluation
criteria assistance.

5. Guidebook

The move to develop a triservice standard accompanied by a DOD handbook to
assist government agencies in evaluating quality assurance programs points out the need
for DOD-level guidance and training to fully implement MIL-S-52779. This guidance and
training were taken as the scope of the guidebook.

128

APPROACH

1. General

Prior to the Workshop, each of the panel members was sent a package containing
the following documents:

MIL-S-52779 (AD) (1974)
MIL-S-52779 (AD) (November 1978 draft)
MIL-STD-1679 (Navy) (pages applying to QA only)
DI-R-2174, Navy, "Software QA Plan"
TADSTAND 9, Navy, Software Quality Testing Criteria
UDI-A-173, NOSC, Software QA Program Procedures
UDI-A-171, NOSC, Software QA Policy
UDI-A-170, NOSC, Software QA Program Organization
UDI-A-172, NOSC, Software QA Program Practices
ESD-TR-77-255, Acquisition Guidebook on Software QA
ASD-TR-78-8, Software Acquisition Guidebook for QA

The panel members were requested to familiarize themseives with these. Other
documents subsequently referenced were AF Reg. 800-14, SAMSO Pamphlet 74-2
("Contractor Software QA Evaluation Guide"), and MIL-S-52779 (AD) March 1979 draft,
which was distributed by H. Tzudiker at the meeting.

With these as background, the panel proceeded to identify the set of documents
that would totally define software QA for weapons systems and the topics that would
comprise the content of each. The top-level document, henceforth referred to as the
"Standard," was discussed to the point where all substantive differences of philosophy
were resolved. The panel then divided into four subpanels, each corresponding to one of
the principal documents defined, to develop the document to the extent practicable.
After a full day of subpanel deliberations, the full panel reconvened to hear the reports
o. each of the subpanels and to discuss each in an attempt to reach consensus on
recommendations for each of the documents.

2. Standard

The activities were basically divided into four phases:

a. Fuil panel review and critique of the existing 21 March 1979 draft revision
provided by the QCIC-001 group

b. Subpanel individual and group review and group resolution of proposed wording
for each paragraph contained in the resultant final draft

c. Coordination of proposed changes with panels or subpanels which might be
affected. This activity also included the solicitation and consideration of
comments and change proposals from other panels and individuals

d. Final full panel review and critique of the subpanel final draft.

In the course of subpanel activity, the pertinent sections (5.9, 5.10, 5.11) of
MIL-STD-1679 (Navy), dated I December 1978, were received for consistency or conflict
with the MIL-S-52779 draft. No inconsistencies or conflict were identified.

129

i

3. DID for QA Plan

The subpanel listed and discussed existing DIDs applicable to software quality
a surance efforts. Included in this list are:

a. DI-A-XXXX Computer Software Quality Assurance Plan

b. DI-R-XXXX (Navy) Computer Software Quality Assurance Program Plan

c. DI-R-30510 (USAF) Quality Program Plan

d. UDI-A-170 (NOSC) Computer Software Quality Assurance Program
Organization

e. UDI-A-171 (NOSC) Computer Software Quality Assurance Policy

f. UDI-A-172 (NOSC) Computer Software Quality Assurance Practices

g. UDI-A-173 (NOSC) Computer Software Quality Assurance Procedures

h. UDI-R-111A Software Quality Control Plan

i. UDI-R-21374A (Navy-AS) Plan, Quality Assurance Program

j. DI-R-2174 Software Quality Assurance Plan

The subpanel was unanimous that DI-R-2174, written to be compliant with
MIL-STD-1679 (Navy), was the most appropriate basis for a MIL-S-52779 compliant DID.
An outline was made of each point in MIL-S-52779 that must be covered in the DID.
These outlines were compared and the necessary additions and deletions to achieve a
MIL-S--52779 DID were identified. With this information, the subpanel wrote the new
required section. Each section of DI-R-2174 that was to be retained was reviewed and
rewritten to make it compatible with MIL-S-52779. A full draft (Appendix 4) of the
proposed new DID was then assembled. This draft was reviewed by the entire quality
assurance panel after the final review of the ultimate MIL-S-52779 revisions and
refinements. Further changes to the proposed DID were made during this review. (Tim-
limitations permitted consideration only of issues of substance. From an editorial point
of view, the DID must be regarded as a first draft).

4. Handbook

The subpanel agreed with the previous OSD direction to revise and expand SAMSO
PAMPHLET 74-2 as a DOD QA Handbook. The style and format of SAMSOP 74-2 was
adopted for the QA Handbook. Indeed, the subpanel's approach was to provide
suggestions to A. Pond of SAMSO/PMGQ, who is performing the revision of 74-2 under an
OSD task, and was also a subpanel member.

130

!

It was agreed that QA Guidebooks containing general guidance/tutorial information
are required to assist in the use of the Handbook. By' the same token, it was agreed that
much of the information in the current Air Force ASD and ESD Software Quality
Assurance Guidebooks is directly transferable to the QA Handbook. During the subpanel
working sessions, requirements clarification questions and suggested changes were jointly
reviewed and coordinated with the Standard, QA Data Item Description, and QA
Software Guidebooks subpanels. The Handbook will be written to apply to all phases of
life-cycle quality assurance where MIL-S-52779 is invoked. However, it was not clear
how government organic software support agencies would apply the Handbook for Post
Deployment Support Systems (PDSS). This problem was not specifically addressed by the
subpanel, but it was felt that PDSS should invoke a direct transfer of MIL-S-52779
requirements and disciplines. In this case, the QA Handbook has direct applicability for
PDSS.

The approach adopted by the subpanel was to follow MIL-S-52779 exactly to
provide a corresponding Handbook to Paragraph A, B, and C for each stated
requirement. The Handbook paragraphs will define:

Paragraph A - Review of Requirements - A review of the stated MIL-S-52779
requirement including any clarification and/or interpreta-
tion

Paragraph B - Application - A discussion of application, scope, and
practices, including examples of how the requirements
applied to Government programs

Paragraph C - Criteria for Evaluation - Specific checklists, questions,
and other information to aid in analysis/evaluation of QA
plans, programs, and QA program results.

5. Guidebook

The subpanel reviewed existing Air Force Systems Command Software Quality
Assurance Guidebooks for applicability to a guidebook reflecting the Standard.

DISCUSSION

1. General

The minimum set of documents considered necessary to govern the QA aspects of
weapons systems software were defined as:

a. Standard
b. DID for software QA plan
c. Handbook to help interpret Standard in evaluating QA programs
d. Guidebook to provide further background in software QA.

In short order, MIL-S-52779 (AD) March 1979 draft was accepted as the basis forthe Standard, since this version had been drafted by Working Group QCIC 001 under the
DOD Standardization Program as chartered by DARCOM, and since MIL-S-52779 (AD)

met the criterion of independence from any specific development methodology. There
were, however, significant reservations concerning the lack of reference to the
monitoring of work certification procedures, the distinctions between program library
control and the control of documentation, the inclusion of references to contractors'
programming conventions and practices and compliance with them under the
documentation requirements, and a requirement to collect error data and submit such
data to a common data base.

131

These and several lesser matters were discussed partly by the Standards subpanel
and partly by the panel as a whole, resulting in the draft of Appendix 3.

In the matter of collecting error data, the panel felt that, as commendable and
useful as a common error experience data bank is (such as the one developed by RADC),
it was not practical to impose the cost penalty for this on each program through the use
of a Q A Standard.

The panel identified several aspects of software QA that should be amplified
beyond the extent attainable in the Standard. These items were:

a. Post Delivery QA

b. Records

c. Cost

d. Independence of the quality responsibility

e. Error data analysis notwithstanding Paragraph 3.2.9 ("Corrective Action") of
the draft standard of Appendix C, Dr. Schneidewind would like it noted that he
feels software error data collection and analysis is an integral part of software
QA and should be mandated on embedded computer projects by being
incorporated in a QA Standard.

f. Transition from development to deployment

g. Documentation substantiation (traceability)

h. QA tools

i. Definition of terms used in software QA.

With the exception of the last of these, for which a specific recommendation was
made, it was the panel's opinion that amplification of these matters be handled in the
Handbook and the Guidebook, as appropriate.

Regarding the first item on the ist, it was also noted that the Guidebook should
contain a tutorial on software QA throughout the life cycle, since MIL-S-52779 is also
intended to apply to any contracts for post-delivery program modifications as well as for
initial acquisition.

2. Standard

The issues, contributing factors/constraints, etc., which were of concern to the
subpanel, and the decisions made, ultimately fell into two categories: level of detail and
scope of applicability, detailed below.

Based on these listed items, the following conclusions were reached in subpanel
discussions and are reflected in the draft document (Appendix 3):

a. The proposed standard should use generic terminology where practical, be held
to the minimum level of detail required to adequately state the requirements
while minimizing the capability for misinterpretation, and include all
categories of software which may affect the quality of end item products.

132

b. The proposed standard should be applicable, when imposed by contract, to all
phases of the fife cycle, be mandatory for'all develop ment/acqu isit ion activity
and contracted operational maintenance activity, and serve as a basis for
quality assurance of organically conducted operational maintenance activity.

c. The proposed standard should specifically address the subject of tailoring the
program to suit the needs of the procurement.

Panel concerns relating primarily to level of detail were:

a. Infringement on contractor organizational prerogatives

b. Intrusion into areas of requirements covered by other DOD documentation,
specifications, and standards

c. Imposition of unrealistic implementation detail in terms of methodologies and
tools, and the levels of control and documentation

d. Availability of other documentation to provide guidance and direction for
specific procurement activities (i.e., data item description, guidebooks,
handbook, specifications and standards, and individual procurement documents)

e. Identification of any differences in requirements associated with end item vs.
nondeliverable software or with use categories (e.g., test, support, operational)

f. Terminology and nomenclature acceptable for triservices endorsement, broad
enough for general application, and specific enough to minimize
m isinterpretation.

Panel concerns relating to scope and applicability were:

a. Life-cycle usage and alternatives for the post-delivery operational
maintenance phase

b. Need for assurance of tailoring to meet the differing require ments/needs of
individual procurement effort.

3. DID for QA Plan

It was agreed early that the software quality assurance function should apply not
only to the final, delivered computer program but also to the documentation that is
produced during the development of that program and which supports it.

Much of the discussion during the drafting of the MIL-S-52779 compliant DID
centered around the instructions that could be given to the contract through the DID,
either directly or implied, about the software assurance actions, organization, and
scope. The approach taken was not to give specific direction, which it was felt would be
inappropriate in the DID, but rather to require the contractor to describe what he will do
with regard to these actions, organization, and scope. Thus, a Software Quality
Assurance Plan could state "none" in some sections if the contractor did not plan to
perform certain actions; the contracting agency could evaluate this response to see if
such an answer were sufficient or appropriate for an acceptable plan in the particular
circumstances.

133

LLI

A disagreement was based on whether the Plan should describe only the procedures
done by the Software Quality Assurance "function'," or if it should also include the
procedures done by the software developers that support or accomplish the quality
assurance objectives. This disagreement was resolved by asking in the DID for the
contractor to state in the Plan both what the quality assurance function does and what
the developers do to support or accomplish the quality assurance objectives.

It was felt that the Plan should address the role of the quality assurance function in
the final certification of the software; such a section has been added to the draft DID.

There was some objection to specific words in the DID, particularly the word
"testability," because there is no agreement on or capability for their precise definition
or measurement. This discussion emphasized the need for a glossary or definition of
terms as might result from an update and expansion of MIL-STD-109B, Quality Assurance
Terms Definitions, to incude software definitions and terms.

It was stated that the Air Force could not require the delivery of a Software
Quality Assurance Plan because of existing Air Force regulations. However, waivers
have been obtained. Discouraging the delivery of Software Quality Assurance Plans was
not considered appropriate and consideration should be given to reversing any such Air
Force regulations.

The subpanel also discussed the requirement for a DID for error or problem
reporting. Such a DID might enable the more effective collection, analysis, and
application of software error data across projects. Several existing DIDs were identified
and reviewed that appear to fulfill this need. Questions concerning the appropriateness
and cost of requiring such error reporting from the software development contractor
were ra ised.

4. Handbook

Handbook Philosophy

The first activity was a philosophical discussion of purpose, intent, and format of
the QA Handbook. A brief summary follows:

a. A set of Quality Assurance Requ~rements (MIL-S-52779) and a Data Iem
Description lead to an approved Quality Assurance Plan and implementation of
a Quality Assurance Program. Software quality assurance "freedom of action"
requirements led to an organizational structure including quality assurance and
configuration management func ti ons. These functions involve various
processes, test programs, analyses, and a series of overlaying monitoring
progra ms. The Handbook provides specific information, guidance, and
checklists to assist the Government and/or contractor in planning,
implementing, or monitoring Quality Assurance Programs. The Handbook
tracks each requirement of MIL-S-52779 and must address their
implementation across all of the interfaces in a software development
activity. The Handbook is organized to assist in interpretation/translation of
requirements, application in planning and conducting QA programs, ard
monitoring/evaluation results. This broad application for Handbook utilization
was adopted in establishing the QA Handbook subpanel's approach to Handbook
preparation.

134

b. The prime purpose is to assist government and prime contractor personnel in
(1) evaluation of QA proposals, programs, and plans, (2) implementation of QA
programs, and (3) monitoring, analysis, and evaluation of QA program
activities and results.

c. The scope is to include all phases of DOD weapons system software
development where MIL-S-52779 is invoked. The interface and application of
the Handbook in PDSS is only applicable where MIL-S--52779 is the controlling
requirement.

d. The Handbook style and format will follow MIL-S-52779 exactly as well as
DOD standardization requirements for preparation of handbooks. Each
MIL-S-52779 paragraph will have a corresponding number paragraph in the
Handbook and will contain in a section or detailed subsections a paragraph:

A. Review of Requirements
B. Application
C. Criteria for Evaluation

e. The Handbook will interface with and rely on a set of Guidebooks to provide
the necessary background information, tutorial instruction, and guidance for
use of the Handbook in specific areas of application and interpretation.

Organizational "Independence"

It was agreed that the "Freedom of Action" requirements in MIL-S-52779 provide for
adequate organization idependence. The handbook and particularly the QA Guidebooks
should elaborate, state examples, and discuss interfaces for both software development
contractor and subcontractor organizations.

SAMSO Pamphlet 74-2 Review

SAMSOP 74-2 was reviewed for content, style, and applicability as a starting point:

a. SAMSO will revise the pamphlet to become a DOD Software Quality Assurance
Handbook.

b. The first release will be 180 days after MIL-S-52779. This is a current
SAMSO/PMGQ commitment.

c. The subpanel will participate in the generation and/or revision process.

d. The current use of SAMSOP 74-2 is primarily for evaluation of software
quality assurance in conjunction with AF/SAMSO RFP review.

e. A significant expansion of Section C, "Criteria for Evaluation," will be
required for QA Handbook use.

f. Subsections will be established in the Handbook to elaborate and detail
complex paragraphs of MIL-S-52779.

g. QA Guidebooks and training courses must be established to augment and guide
the Handbook user.

I 135

I
. 4

MIL-STD-1679 (N) Review

The subpanel reviewed MIL-STD-1679 (N) for comparison with MIL-S-52779 as a
source for Handbook/Guidebook material. It was agreed the MIL-S-52779 covers all the
requirements stated in MIL-STD-1679 (N). MIL-STD-1679 (N) does contain a great deal
of well written information suitable for QA Handbooks and/or Guidebooks and will be
included, where appropriate.

MIL-S-52779 Review of Handbook Requirements

The following comments/actions and results are listed by specific MIL-S-52779
paragraph references:

a. Paragraph 3.1, Software 9A Proam - This requirement is very complex as
written and will be covered in the Handbook in three separate subsections:

(1) Program Definition
(2) QA Plans, Content, Scope, and Style
(3) Authority and Organizational Freedom.

Each subsection will contain detailed user information and evaluation criteria.

b. Paragraph 3.2.1., Tools, Techniques, Methodologies, and Records - The
Handbook will include each topic as a separate subsection and include error
analysis information under Tools or Methodologies.

c. Paragraph 3.2.3, Work Certification - The Handbook will place emphasis on
"resource allocation" in this requiremaents section. The goal is to assure a
major concentration of contractor QA resources on high-leverage, "up-front"
software development activities. Focus on resource allocation will also
provide a significant overall level of effort during the entire software
acquisition process. It is intended that "work certification" be more than just
a formalized, witness function at the end of a series of activities which may or
may not be supported by adequate QA resources. The main payoff is early
involvement with sufficient resources for QA.

d. Paragraph 3.2.4, Software Documentation and Programming Conventions - The
Handbook will treat the general subject of Documentation and Programming
Standards and/or Conventions as separate issues. Emphasis will be placed on:

(1) Methods of showing correctness and completeness of documentation

(2) Auditing function for showing compliance to programming/coding
conventions and standards.

The QA importance of adhering to standards and conventions is worthy of special,
detailed treatment in the Handbook and will be included in Criteria for Evaluation.

136

e. Paragraph 3.2.6, Reviews and Audits - The Section C, Criteria for Evaluation,
will contain detailed information on each major milestone such as SDR, PDR,
CDR, etc. Much of the existing information in the ASD and ESD Quality
Assurance Guidebook (TRW and SDC) will be used to develop this section.

f. Paragraph 3.2.7, Configuration Management - An in-depth discussion of the
relationship between quality assurance and configuration management will be
included in this section of the Handbook. These areas must complement each
other in an appropriate management structure to execute an effective QA
program.

g. Paragraph 3.2.9 (c), Corrective Action - A lengthy discussion was held
concerning requirements for "corrective action" and how determination could
be made by analytic means. Error analysis should be a primary means of
evaluating QA programs and directing attention to specific needs for
correction action or recovery programs. It was agreed that use of "error
analysis" should be described in the Handbook and treated in-depth in the QA
Guidebooks. It was also agreed that much theoretical and practical effort is
required before software error definition, reporting categories, and/or analysis
is mature enough to assist in conducting and monitoring QA programs.

5. Guidebook

Initially, the subpanel members were sharply divided over the need for any
guidebooks, much less a DOD-level guidebook on software quality assurance. The ensuing
discussion revealed that the principal objection centered more on the difficulty of
producing and coordinating a triservice document than on the need for the document.
Additional objections centered on the perceived uniqueness of the various services
requirements and the possible constraints inherent in the development and imposed use of
a triservice document.

Examination of the content of current quality assurance Guidebooks and
restatement of the intended treatment of quality assurance topics in the proposed DOD
Guidebook seemed to satisfy even the most skeptical.

Concurrent with and interspersed throughout the discussion of the need and content
of a DOD-level guidebook was the need for a DOD-level training course for quality
assurance personnel. The objection to such a course followed the same theme of service
uniqueness but in this case also centered on which agency could best conduct such a
course (one subpanel member was already conducting quality assurance training but on a
much smaller scale than would be required for a triservice course).

In summary, the subpanel deliberations resulted in identification of a need for a
DOD-level multiservice Software Quality Assurance Guidebook. The purpose of the
Guidebook is to encourage standardization by providing textual material of direct
interest to management, contracting, and engineering personnel. The Guidebook would
be based upon existing QA and related guidebooks. It would discuss and elaborate on the
topics contained in MIL-S-52779, the implementation of the QA program throughout the
life cycle and, along with MIL-S-52779, would become the basic text for a standard
DOD-level software quality assurance training course. The training course would be
tailored to the specific requirements of acquisition managers, design agents (software
developers), quality assurance personnel, and contract administration services (C AS). An
outline of the major topics in the proposed DOD Guidebook is presented here.

3 137

TITLE: SOFTWARE QUALITY ASSURANCE PROGRAM GUIDEBOOK

I INTRODUCTION

APPLICABILITY

II APPLICABLE DOCUMENTS

DEFINITION OF TERMS

III SQA PROGRAM REQUIREMENTS

DISCUSSION OF TOPICS IN SECTION 3 MIL-S-52779

IV SQA PROGRAM IMPLEMENTATION

DISCUSSION OF SQA PROGRAM ACTIVITIES THROUGHOUT THE LIFE
CYCLE

Note: Guidebook to be based upon current guidebooks developed by Air Force
Systems Command.

RECOMMENDATIONS

1. General

The Panel recommended that a glossary of software QA terminology, applicable to
all software QA documents, be developed and appended to MIL-STD-109.

2. Standard

Based on the conclusions of Paragraph 4.2 and the assumption of triservice
endorsement of the MIL-S-52779 draft update, dated 5 April 1979 (Appendix 3), the panel
recommendations for JLC action are:

a. Complete necessary steps for issuance of the draft update as a DOD Standard

b. Although there was no time to discuss this with the panel at large, the
subpanel also recommended:

(1) Establish a mechanism (standing committee, ad hoc groups, etc.) for
review of overall progress of software quality standards efforts, pursuing
resolution of unresolved quality concerns and providing additional
recommendations for changes necessary to develop and maintain a quality
assurance activity compatible with state-of-the-art advancements in
software technology.

(2) To evaluate the necessity or desirability of a course of action aimed at
consolidating comparable activities of other agencies, associations, and
professional groups for development of a commercial/DOD compatible set
of standards, specifications, and guidance documentation.

138

I
3. DID for QA Plan

The panel recommends that the attached draft DID (Appendix 4) be reviewed,
approved, and issued to support the implementation of MIL-S-52779.

4. Handbook

The panel recommends that the Handbook being prepared by A. Pond under OSD
Task to update SAMSO Pamphlet 74-2, with the modifications suggested by this panel, be
approved and issued as a triservice document. (Mr. Pond intends to send a draft of the
Handbook, when available, to the subpanel members for their review.)

The panel also recommends that the JLC support contributing activities to define,
refine, and generally develop error analysis as a prime means of flagging corrective
action and evaluating QA programs.

5. Guidebook

The panel recommends that the JLC request OSD QA Council to issue Task for
Development of DOD-Level Software QA Guidebook.

The panel recommends that the JLC establish a DOD Software QA Course within
the Defense Management Education Training Concept.

II
I
I
I

1139

I

APPENDIX 1 - PARTICIPANTS

I

APPENDIX 1 - PARTICIPANTS

Chairman R. Dunn, ITT Avionics Division
100 Kingsland Road, Clifton, NJ 07014

Subpanel on Standards:

Chairman - Mr. W. J. (Jack) Stroube
Space Systems Division Product Assurance
Lockheed Missiles & Space Co., Inc.
1111 Lockheed Way
Sunnyvale, CA 94086

Members Major Roy F. Miller
Box 504
LMSC/AFPRO Det. 13/AFCMD
Sunnyvale, CA 94086

Mr. Earl B. Stewart
U. S. Army Missile Research and Development Command
Attn: DRDMI-QEA
Redstone Arsenal, AL 35089

Mr. Harvey Tzudiker
U. S. Army Computer Systems Command
Attn: Stop CiOO
Fort Belvoir, VA 22060

Subpanel on DID for QA Plan:

Chairman Mr. Raymond J. Rubey
Softech
Claypool Building
Suite 355
4130 Linden Avenue
Dayton, OH 45432

Members Mr. James Cellini
RADC/ISIS
Griffiss AFB, NY 13441

Mr. Clell Gladson - QT
Defense Contract Administration Service
Los Angeles Region
11099 South La Cienega Boulevard
Los Angeles, CA 90045

141

I

Subpanel on DID for QA Plan: (cont)

Members - Mr. Calvin Showalter
Naval Air Systems Command
ATTN: AIR 53311
Washington, DC 20361

- Dr. Norman F. Schneidewind
Professor of Information Science
Department of Computer Science
Code 52 SS
U.S. Naval Postgraduate School
Monterey, CA 93940

- Mr. Melvin Mitchell
SM-ALC/MMECM
McClellan AFB, CA 95652

Subpanel on Handbook:

Chairman - Mr. Richard A. Maher, 55/2856
TRW Defense and Space Systems Group
One Space Park
Redondo Beach, CA 90278

Members - Mr. Andrew Pond
HQ, SAMSO/PMGQ
P.O. Box 92960 - Worldway Postal Center
Los Angeles, CA 90009

- Mr. Michael Kirchner
Defense Logistics Agency
Attn: DLA-QES
Cameron Station
Alexandria, VA 22314

- Mr. Tye Gibson
HQ. Naval Material Command
Attn: 08E3
Washington, DC

Subpanel on Guidebook:

Chairman - Mr. L.D. Parriott
TRW, DSSG
Mail Stop 55/3569
One Space Park
Redondo Beach, CA 90278

142

I

ISubpanel on Guidebook: (cont)

Members - Mr. Robert Dubois
U.S. Army Materiel Development
and Readiness Command
DRCM-QA-E
5001 Eisenhower Avenue
Alexandria, VA 22333

Mr. P.A. Rhodes
Code 9133
Naval Ocean Systems Center
San Diego, CA 92152

Mr. Clare E. Skrukrud
SAI Comsystems Corporation
P.O. Box A-81126
2801 Camino del Rio South
San Diego, CA 92138

Major David Austin
HQ AFSC/PMN
Andrews AFB
Washington, DC 20334

Panel Member At Large:

F. Barricelli, CORADCOM

Attn: DRDCO-PT-J
Fort Monmouth, NJ 07703

1
I
I
!
I
I 143

I

I
I
I

APPENDIX 2- BIBLIOGRAPHY

I
I
I
1
I
I
I

'I

- APPENDIX 2- BIBLIOGRAPHY

1. MIL-S-52779 (AD) Software Quality Assurance Requirements
April '74
November '78 draft update1March '79 draft update

2. MIL-STD-1679 (Navy) Weapons Systems Software Development

3. DI-R-2174, Navy, "Software QA Plan"

4. TADSTAND 9, Navy, Software Quality Testing Criteria

5. UDI-A-173, NOSC, Software QA Program Procedures

6. UDI-A-171, NOSC, Software QA Policy

7. UDI-A-170, NOSC, Software QA Program Organization

8. UDI-A-172, NOSC, Software QA Program Practices

9. ESD-TR-77-255, Acquisition Guidebook on Software QA

10. ASD-TR-78-8, Software Acquisition Guidebook for QA

11. DI-A-XXXX Computer Software Quality Assurance Plan

12. DI-R-XXXX (Navy) Computer Software Quality Assurance Program Plan

13. DI-R-30510 (USAF) Quality Program Plan

14. UDI-R-111A Software Quality Control Plan

15. UDI-R-21374A (Navy-AS) Plan, Quality Assurance Program

16. AF Reg. 800-14, Management of Computer Resources in Systems

17. SAMSO Pamphlet 74-2, Contractor Software QA Evaluation Guide

1145

I
1i

1

I

APPENDIX 3- MILITARY SPECIFICATION
SOFTWARE QUALITY ASSURANCE

PROGRAM REQUIREMENTS

I

APPENDIX 3 - MILITARY SPECIFICATION SOFTWARE QUALITY
ASSURANCE PROGRAM REQUIREMENTS

DR AFT
MIL-S-52779
5 April 1979

This specification is approved for use by all departments and agencies or the
Department of Defense.

1.0 SCOPE

1.1 APPLICABILITY

When referenced in the item specification, contract, or order, this specification
shall apply to the acquisition of software (computer programs, related data, and
documentation) where the acquisition involves either software alone or software as a
portion of a system or subsystem. This specification shall also apply to nondeliverable
design, test, support, and operational software developed under the contract, unless
specifically exempted. For purposes of this specification, the term software includes
firmware.

1.2 CONTRACTUAL INTENT

This specification requires the establishment and implementation of a Software
Quality Assurance (SQA) Program (hereafter referred to as the Program) by the
contractor. The purpose of the Program is to assure that software developed, acquired,
or otherwise provided under the contract complies with the requirements of the
contract. It is intended that the program be effectively tailored and economically

planned and developed in consonance with, or as an extension of, the contractor's other
quality assurance, administrative, and technical programs. The term Program, as used

require periodic assessment and, where necessary, realignment of the Program to
conform to changes in the acquisition program. The Program is subject to disapproval by
the Government whenever it does not accomplish the requirements of this specification.

1.3 RELATION TO OTHER CONTRACT REQUIREMENTS

The contractor is responsible for compliance with all provisions of the contract and
for furnishing specified software which complies with all the requirements of the
contract. The SQA Program Plan shall reference other plans; e.g., configuration
management, test, development, etc., specified under the contract and shall be
compatible and consistent with them and not unnecessarily duplicate their provisions. If
any inconsistency exists between the terms of the contract and this specification, the
Order of Precedence clause of the contract shall govern.

147

2.0 APPLICABLE DOCUMENTS

2.1 AMENDMENTS AND REVISIONS

Whenever this specification is amended or revised subsequent to its contractually
effective date, the contractor may follow, or authorize his subcontractors to follow, the
amended or revised document, provided no impact on schedule or increase in cost, price,
or fee is required. The contractor shall not be required to follow the amended or revised
document except as a formally authorized modification to the contract. If the
contractor elects to follow the amended or revised document, he shall notify the
contracting officer in writing of this election. When the contractor elects to follow the
provisions of an amendment or revision, he must follow them in full.

2.2 ORDERING GOVERNMENT DOCUMENTS

Copies of specifications, standards, and documentation required by contractors in
connection with specific procurements may be obtained from the procuring agency, or as
otherwise directed by the contracting officer.

3.0 REQUIREMENTS

3.1 SOFTWARE QA PROGRAM

Upon contract award, the contractor shall plan, develop, and implement an SQA
Program which includes practices and procedures to assure compliance with all software
requirements of the contract. The Program activities shall be a part of the management
reporting system throughout the life of the contract. The contractor shall document the
Program in the form of an SQA Plan (hereafter referred to as the Plan) which meets the
requirements of this specification. The Plan shall identify organizational responsibilities
and authorities for its execution and the events critical to its implementation. The Plan
also shall identify and make timely provisions for special needs (controls, tools, facilities,
skills, etc.) required for the Program and shall provide for detection, reporting, analysis,
and correction of software problems and deficiencies. Contractor personnel performing
quality functions shall have the responsibility, authority, and organizational freedom to
evaluate software activities, identify problems, and initiate or recommend corrective
action.

3.2 SOFTWARE QA PROGRAM REQUIREMENTS

The Plan shall address the following requirements:

3.2.1 Tools, Techniques, and Methodologies

The Plan shall identity the tools, techniques, methodologies, and records to be
employed in the performance of the work which will support QA objectives and describe
how their use will augment or satisfy QA Program requirements. Examples include:
operation research - systems analysis techniques, functional and performance
requirements analysis, error analysis, software optimization tools, specification tracing,
and coding conventions.

148

3.2.2 Computer Program Design

The Plan shall reference or document the procedures by which design
documentation is reviewed to evaluate design logic, fulfillment of requirements,
completeness, and compliance with specified standards. Design documentation shall be
subjected to independent review prior to its release for coding.

3.2.3 Work Certification

The Plan shall reference or document the contractor's procedures for formally
approving and certifying the description, authorization, and completion of work
performed under the contract. The Program shall require monitoring to assure
compliance with these procedures.

3.2.4 Documentation

Documentation standards and programming conventions and practices to be used
for all software shall be referenced or documented in the Plan. The Plan shall reference
or document the procedures to be applied to assure compliance with standards, practices,
and conventions and delivery of correct documentation and change information to the
Government. In addition, the Plan shall provide for the independent review of
documentation and designation of contractor approval authority.

:1.2.5 Computer Program Library Controls

The Plan shall reference or document the contractor's procedures and controls for
the handling of source and object codes and related data in their various forms and
vers ions, from the time of their initial approval or acceptance until they have been
incorporated into the final media. The objective of these controls is to ensure that
different computer program versions are accurately identified and documented, that no
unauthorized modifications are made, that all approved modifications are properly
incorporated, and that software submitted for testing is the correct version.

.3.2.6 Reviews and Audits

The Plan shall reference or document the contractor's procedures for preparation
and execution of reviews and audits, for establishing the traceability of initial contract
requirements; through the successive baselines, and for ensuring that the reviews and
audits are conducted in accordance with the prescribed procedures~. The schedule for
review and audits shall be referenced or stated in the Plan.

3.2.7 Configuration Management (CM)

The Plan shall specify the relationships between the SQA and CM programs and
shall reference or document the procedures for assuring that the objectives of the CM
program are being attained.

149

3.2.8 Testing

The Plan shall reference or document procedures for assuring the accomplishment
or the following:

1. Analysis of software requirements to determine testability

2. Review of test requirements and criteria for adequacy, feasibility, and
traceability and satisfaction of requirements

3. Review of test plans, procedures, and specifications for compliance with
contractual requirements and to ensure that all authorized and only authorized
changes are implemented

4. Verification that tests are conducted in accordance with approved test plans
and procedures

5. Certification that test results are the actual findings

6. Review and certification of test reports

7. Ensuring that test-related media and documentation are maintained to allow
repeatability of tests

8. The contractor shall ensure that support software and computer hardware used
to develop and test software and hardware under the contract are acceptable
to the Government.

3.2.9 Corrective Action

The Plan shall reference or document procedures which assure the prompt
detection, documentation, and correction of software problems and deficiencies.

Procedures shall include:

I. Documenting and reporting problems and deficiencies to appropriate
management levels

2. Analysis of data and examination of problem and deficiency reports to
determine their extent and causes

3. Analysis of trends in performance of work to prevent the development of
noncompli ant products

4. Review of corrective measures to ensure that problems and deficiencies have
been resolved and correctly reflected in the appropriate documents

5. Analysis or review as otherwise provided for in the contract.

150

3.3 SUBCONTRACTOR CONTROL

The Plan shall reference or document the procedures to assure that all -software
acquired from subcontractors conforms to applicable requirements of the contract and
t his specification. When the Government elects to perform reviews at the
subcontractor's facilities, such reviews shall not be used by contractors as evidence of
effective control of quality of subcontractors by the contractor. It does not relieve the
contractor of his responsibility for furnishing software that meets all contract
requirements.

4.0 RESPONSIBILITIES

4.1 CONTRACTOR

Nothing specified herein relieves the contractor from the obligation to submit to
the Government for acceptance end products that conform to all contract requirements.

4.2 GOVERNMENT REVIEW AT CONTRACTOR, SUBCONTRACTOR, OR VENDER
F AC ILITI ES

The Government reserves the right to review, at their sources, all products or
services, including those not developed or performed at the contractor's facility, to
determine the conformance of products or services with contract requirements.

5.0 PRIEPARATION FOR DELIVERY

The Plan shall reference or document procedures for assuring integrity of software

products during handling, storage, preservation, packaging, and shipping.

6.0 NOTES

(Trhe following information is provided solely for guidance in using this
specification. It has no contractual significance).

6.1 INTENDED USE

This document will apply specifically to the acquisition of computer software
where the acquisition involves either software alone, or software as a portion of a system
of subsystem.

6.2 ORDERING DATA

'rhe procuring activity shall consider specifying the following:

6.2.1 Procurement Requirements

1. Title, number, and data of this specification

2. Software QA Program Plan. Consideration should be given to requiring the
contractor to deliver a Software QA Program Plan in response to the invitationI for bid, or request for proposal, or request for quotation and as a Contract
Data Requirements List item (see Paragraph 6.2.2). The Plan should define the
methods and procedures which the contractor propose% to use in fulfilling the
requirements of this specification. Note: The Software QA Program Plan may
be included as part of other plans; see Paragraph 1.3.

3 151

3. The application of this specification should be carefully tailored to meet the
minimal essential needs of the acquisition.

4. Consideration should be given to citing current standards and specifications for
configuration management, documentation, review, audit, development
practices, work breakdown structures, etc.

5. Application of this specification to software maintenance contracts is
encouraged.

6. Rapidly changing technology may require the acquiring activity to clarify use
or application of the term "firmware."

6.2.2 Contract Data Requirements

All plans, documentation, and reports which are required to be delivered to the
Government will be specified on a DD Form 1423, Contract Data Requirements List
(CDRL) or authorized equivalent. The format, type of copy, number of copies, degree of
detail required, delivery schedules, and purpose of submission should be specified on the
CDRL.

152

I
I I

APEDX4 OTAEQAIYASRNEPA

I

i
U

I

I

APPENDIX 4 - SOFTWARE QUALITY ASSURANCE PLAN

DOD DI

M IL-S-52779

3.1 The Quality A.surance Plan describes the organization and system of the
contractor to assure that software and documentation delivered under the
contract complies with the requirements of the contract. The Quality
Assurance Plan shall be oriented toward the specification, design, and
development of software and documentation that is planned and developed in
consonance with the contractor's other administrative and technical programs.

7.1 The Software Quality Assurance Plan defines how the contractor will
implement the quality assurance program as applied to a software project. It
provides the Government with detailed knowledge of the contractor's quality
assurance program and may be used to monitor the QA program, as
implemented.

10.1 Unless otherwise stated in the solicitation, the effective date of the
document(s) cited in this block shall be that listed in the issue of the DOD
Index of Specifications and Standards (DODISS) and the supplements thereto
specified in the solicitation and will form a part of this Data Item Description
to the extent defined within.

I (.2 The Software Quality Assurance Plan shall include all the subjects and itemi
included below, if applicable.

1(.2.l Introduction. Includes scope of QA Plan and identification of all development
procedures and products subject to the provisions of the plan. The contractor
policies, the objectives of the QA Plan, and the goals of the QA effort shall be
stated. A list of applicable documents, their sources, and dates of issue shall
be provided. The list shall include, but not be restricted to, Government
standards and specifications applicable to the effort; the contractors' own
standards, practices, and procedures; configuration management plans;
software development plans; statements of work; and other governing
.specifications.

10.2.2 Organization. Describe the organization of the QA function designed to
comply with the requirements for quality assurance in MIL-S-52779. Include a
chart showing the relationship of the QA function to management and other
organizational elements. Describe the general authority and responsibility of
the QA function and the means to be provided to exercise this authority,
including signature approval/disapproval authority and procedures. The
organizational dependence or independence of the QA function relative to
other organizational elements shall be clearly described.

i
I 153

I

10.2.3 Quality Assurance Procedures. Describe QA procedures in the areas listed
below which will support quality assurance objective,;. In each area, identify
all QA practices, techniques, and methodologies and describe how their use
will augment or satisfy the QA requirements of MIL-S-52779.

10.2.3.1 Software Development. The Software QA Plan shall provide for monitoring
execution of the procedures used in issuing and tracking the work tasking
instructions for all work relating to the software development. Subjects to be
monitored shall include, but not be limited to, the following: The description
of the work to be accomplished; assignmnent of responsibility for its
accomplishment; the manner in which the initiation of work is authorized 'Ind
completion of work is certified; the manner in which periodic reports on the
status of work against approved schedules and resources allocations are
prepared and submitted; and scheduled completion dates.

10.2.3.2 Configuration Management (CM). Specify the quality assurance measures to
be applied to CM. Describe methods for evaluation of the contractor's CM
procedues to ensure that the objectives of the CM program are being attained.
The plan shall designate responsibility for conducting the evaluations of CM J
and the expected number of frequency of evaluations. The Software QA Plan
shall describe the method by which documentation of the evaluations is
accomplished.

10.2.3.3 Software Specification, Design, and Coding. Describe all QA procedures to be
applied by the contractor to specification, design, and coding of software.

The QA Plan should describe and distinguish between the procedures applied by
L.ie QA function and the procedures applied by the software developers that
support, complement, or implement the QA objectives. The QA Plan shall
describe how the results of the application of these procedures will be
documented. QA procedures to be described in this area shall include, but not
be limited to, the following:

1. Review of functional and performance specifications to determine
conformance to and compliance with higher level requirements as
expressed in operational requirements documentation, applicable military
s tandards and military specifications, the statement of work, and other
governing specifications contained in or invoked by the contract.

2. Review of all interface design, program design, data structure and data
base design specifications and documents to evaluate the respective areas
in ter ms of ef f ici ency, e f fec t iveness, reliability, testability,
maintainability, and conformance with higher level specifications and
standards. The QA Plan shall state whether or not the accomplishment of
the design documentation review occurs prior to the release of the
computer program design to coding.

154

3. Review of the coding process to ensure that the program is being coded in
accordance with approved design specifications and applicable
programming standards and conventions.

4. Procedures by which allocated computer program resources and actual
utilitization are to be monitored and reviewed to ensure that established
constraints for processing time, storage, and input/output channels are not
exceeded, and the specified reserves are maintained.

5. Procedures for application,; of tools, techniques, and methodologies
throughout the software development process to point out software
defects as well as areas for potential improvement prior to formal testing.

6. Procedures to be followed to ensure that the software development
process is conducted in accordance with the approved software
development plan.

7. Procedures for certification of tools, techniques, and methodologies used
throughout the software development process.

10.2.3.4 Software Testing. Describe all QA procedures relative to testing of the
software. The specifying, defining, and scheduling of tests are contained in
separate Test Plans and Test Specifications. The Test Section of the QA Plan
addresses the procedures to assure the quality of all aspects of testing.
Software Testing QA procedures to be described shall include but not be
limited to thosc in MIL-S-52779 Paragraph 3.2.8.

10.2.3.5 Corrective Action. Delineate those contractor procedures which shall assure
the prompt reporting and correction of deficiencies which have resulted in or
could result in noncompliant software. Corrective action shall include as a
minimum the requirements of MIL-S-52779 Paragraph 3.2.9.

10.2.4 Documentation. Describe the contractor's procedures for reviewing
documentation for compliance with standards, conventions, and practices and
compliance with contract requirements. The procedures shall identify how
compliance and approval will be indicated on the documentation and the
scheme for numbering draft and final versions of the documentation. The
procedures shall address the distribution, update, and controls of the master
and backup documentation. Where the contract is silent, the contractor shall

identify documentation standards, practices, and conventions that will be used.

10.2.5 Computer Program Library Controls. Describe the procedures for the
maintenance and control of the working library, the master library, and the
contingency library. The plan must specifically describe the procedures for
maintaining version accountability by limiting access to and by controlling
internal (contractor) and contractual baselined code.

155

10.2.6 Reviews and Audits. Describe the procedures that the QA Function will use to
ensure that the preparation and execution of formal reviews and audits (e.g.,
PDR, CDR, FCA) are conducted in accordance with the prescribed procedures
and are accurate representations of the current software and docimentation
status. The role of the QA function in establishing traceability of inital
contract requirements through successive baselines shall be included or
referenced. Subcontractor review and audit schedules shall be described and
synchronized with the prime contractor review and audit schedules. The QA
Plan shall also describe any additional reviews and audits; both scheduled and
unscheduled QA reviews and audits shall be described.

10.2.7 Subcontractor Control. Describe procedures and responsibilities for assuring
that all software developed by subcontractors is developed in accordance with
the requirements of MIL-S-52779 and any other contractual requirements.
Describe the degree of prime contractor participation in subcontractor(s)
software QA program(s). The review of subcontract statements of work,
review, and audit of subcontract procedures and progress, and inspection and
acceptance of subcontractor-developed deliverables shall be discussed.

10.2.8 Final Certification. Describe the procedures and responsibilities for the final
certification that all delivered software products meet all contractual
obligations, including both software and system performance objectives.

10.2.9 Reporting and Control System. Describe the reporting and control system that
will be employed to:

I. Permit management to monitor overall quality status of the software and

documentation

2. Permit decisionmaking on the basis of quality assurance data

3. Bring inadequacies, discrepancies, and deficiencies, as well as proposed
improvements, to the attention of appropriate supervisory and
management personnel in a timely manner

4. Permit rapid and effective corrective action with positive feedback and
response.

;0.2.40 Preparation and Delivery. Describe the QA measures to be applied to assure
the integrity of software products during handling, storage, preservation,
packaging, and shipping.

10.2.11 Plan Implementation. Describe specific tasks, responsibilities, and resources
necessary to implement the Software Quality Assurance Plan. Show personnel
resources to be assigned to the QA function, including number and background
of individual QA personnel, duration and percentage of time they will be
assigned to the QA function, and duties they will be assigned (if any) while not
performing QA.

156

I NOTES ON APPENDIX 4

I Dr. Schneidewind would like the following comments noted:

1. Paragraph 3.1 should state that the QA Plan should also apply to maintenance.

2. The first sentence of Paragraph 10.2.3.3 should include maintenance.

I15I
I
I
I
I
i

I

I

1
I

I
I
1
I
I
I APPENDIX 5-COMMENTS ON PANEL C REPORT

I
I

I
I
I
I
I
I
I
I
I

1t

~~~~DEPARTMENT OF THE AIR FORCE -z' ,.

Hieadquarters Rome Air Development Center (AFSC) "
~~Griffiss Air Force Base, New York 13441 .r

i Reply to

Attn. of: ISIS, (315)330-4325 5 Jun 1979

SUBJECT: Comments on Panel C Report, JPCG-CRM Software Workshop

Lt. Col. H. Oberkrom
HQ AFLC/LDEC
Wright-Patterson AFB OH 45433

1. My comments will be consistent with the page numbers and the

paragraph designation system of the May 18, 1979 report to all members

of Panel C from Robert Dunn. In addition, I will concentrate in the
sub-panel area defined as "DID for a software QA plan".

2. Comments:

(a) Page 7, Paragraph 4.1 - In the discussion of the matter of collecting
error data I feel that there is really little or no cost penalty since some
companies include software data collection as part of their Quality
Assurance Plan. They do this for management control of the software
development process and to provide data for research in software
development methodology. It is possible that not all organizations
specifically collect error data but highly improbable. The cost penalty
could be incurred in the analysis of this data but analysis would not always
be required.

(b) Page 9, Paragraph 4.3 - Specific type software development, (not
necessarily weapons systems) could require analysis, thus a separate DID
is in order or should be an option within the proposed change to
DI-R-2174. At this time I disagree that there are any existing DIDs that
fulfill this need. In going over the package of DIDs that were received
prior to and at the Workshop, I find the implication for data collection but
nothing that is specific enough. In the event I missed the existing DIDs
that fulfill the need, please inform me where I may obtain them.

Regarding terminology, not only in the Quality Assuance area but in
general in the Software Community, I feel progress has been slow in doing
'something' with MIL-STD-109B. Not having any results of the
recommendations of the other panels, I would like to go on record as
stating that this standard can be improved tremendously just from the
work in recent years by the IEEE Software Engineering Standards

159



Subcommittee on Terminology. As a whole, the MIL-STD-109B is
inadequate for most procurements....

- James V. Cellini, Jr. Cy to: Mr. Robert H. Dunn
Software Sciences Section Dept 63401
Information Processing Branch ITT Avionics Division

100 Kingsland Road
Clifton NJ 07014

160



I
I
I

I PROCEEDINGS OF THE SOFTWARE WORKSHOP

JOINT LOGISTICS COMMANDERS

I JOINT POLICY COORDINATING GROUP ON COMPUTER RESOURCE MANAGEMENT

MONTEREY, CA, 2-5 APRIL 1979

Report of the Panel on

SOFTWARE ACCEPTANCE CRITERIA

IJ Chairman: R. Dean Hartwick
Logicon, Inc.

.
I
I
I
I
I



OBJECTIVE

Develop recommendations for the Joint Logistics Commanders Joint Policy
Coordinating Group (JLC-JPCG) on Computer Resource Management, as tle first step
toward a triservice standard that delineates criteria for the acceptance of embedded
computer software.

SCOPE

Currently, no definitive criteria for the acceptance of embedded computer
software are provided through the existing military standards; as a result, the acquisition
program manager often has no assurance that computer software, if accepted, will
perform operationally at an acceptable level. Successfully supplying such criteria not
only should satisfy the primary objective of delivering operational software that works,
but also should:

1. Allow the extent of acceptable developmental progress to be quantitatively
n casured.

Improve visibility into the developmental status of software throughout the
developmental cycle.

3. Provide a better basis for software acquisition managers and software
developers to agree on job completion criteria.

I. Provide a basis to better express the quality of delivered software.

Thi p mel was assigned to review military standards, regulations, and instructions
ile,' ,ert nent to the ac'uisition and quality assurance of computer software. It was
t',smrnei that the appropriate application of software acceptance criteria could be

,'evc!,,peJ as stand-alone documents, as modifications or interpretations of existing
doeuments, or a combination of the two. The panel's objective was to determine the best
way of' implementing software acceptance criteria based upon how they might best work,
r,(q1irc the least perturbation to existing documents, and be expeditiously implemented.
"he panel al~o considered the sequence of steps through which the panel findings could
',,'( 'it ti,'jI lv be utilized.

The panel on software acquisition acceptance criteria consisted of the 14 members
,iammdl in Appendix 1. The panel had previously been informed through a letter from the

,,Imel chairman (Appendix 3) of the purpose and objectives of the workshop. After the
general workshop meeting had adjourned, the panel met for an hour on April 2 to discuss
the panel charter, and the procedure to be followed in achieving it. At this meeting, the
panel received a handout suggesting the procedure for further dividing the issue into
three smaller questions and appointing subpanels for detailed analysis (Appendix 4).

On the morning of April 3, the complete panel met and received presentations on
viewpoints held by panel members from different services. Presentations were made by:

1R1



1. J. Gary Nelson U. S. Army Test and Evaluation Command
2. Richard Mitchell Naval Air Development Center
3. Alton Patterson Sacramento Air Logistics Center

A copy of visual aid-,. used by Mr. Nelson and Mr. Patterson and summaries of the
talks of Mr. Mitchell and Mr. Patterson are contained in Appendix 5.

Following the presentations, the entire panel arrived at a number of consensus
positions, which are summarized and discussed in the section of this report titled
"Discussion." With these consensus points established, the panel formed the following
subpanels for more detailed analysis and discussions:

Standards Interface Acceptance Procedures Software Error Theory

Stanley Brown Robert Alger Roger Bate
Brinton Cooper Brian Butler Gene Walters
Paul Reimann Frank Phillips Gary Nelson
George Tice Richard Mitchell Boyd Wilson

Alton Patterson

For the rest of the workshop, the panel alternated between subpanels considering
their detailed areas, subpanels presenting findings to the panel, and broader panel
discussi ons.

On the afternoon of the first day, the panel chairman gave a short presentation of
panel objectives to the entire workshop. Thereafter the panel results were summarized
each day by the panel chairman. Visual aids used in these presentations are contained in
Appendix 6.

The panel reached a consensus that a final meeting was required to complete its
report. Included in this report would be two draft documents for submission to the
JLC-JPCGCRM. These are contained herein as Appendices 7 and 8, and are discussed in
the next section, Discussion. Accordingly, a smaller group of the panel met in San Pedro,
CA, on May 22, 23, and 24 to finish the draft report. The following panel members
participated at this session:

Robert Alger
Roger Bate
Marilyn Fujii
R. D. Hartwick
Richard Mitchell
Alton Patterson
Paul Reimann

Throughout all panel meetings, Paul Reimann served as secretary. His excellent
notes were essential in drafting this report.

DISCUSSION

The first issue addressed by the panel was:

"What is the problem that developing a standard set of acceptance criteria solves?"

162



The problem addressed was articulated as follows:

Problem: A need exists to measure embedded computer software performance to
ensure that the software will perform acceptably when used.

The two words that are underlined presented tile two significant problems faced by the
panel. First, it wished to deal as much as possible with specifics that could be
understood and applied by a variety of people throughout the triiervices. It could not be
assumed that experienced software engineers would be the only people applying the
criteria. Therefore, the criteria had to be meaningful and, if possible, quantifiable to
ensure uniformity and fairness of application. Second, the criteria had to measure the
appropriateness of thle software to accomplish its, intended mission. The underlying
purpose of this entire effort is to ensure that both operational and support software,
when delivered to be used, will work through its life cycle.

Additional advantages should result from the application of a good set of
acceptance criteria. These include:

1. Because it ensures that requirements are codified early, program offices are
able to detect and correct software problems at the best possible (cost
effective) time.

2. A better basis is provided to record and communicate software status.

3. A negotiated basis is provided for developers and users (or contractor and
buyers) to ascertain completion.

4. Additional support for program review is provided.

5. Management is given enhanced visibility into software development progress.

The presentations by panel members and resulting discussions revealed several
consensus points on how all of the services and industries represented actually improve
sof tware acceptance criteria in their ongoing acquisitions of new software and
maintenance of existing software.

1. Software Acceptance Criteria Should Be Applied Throughout The Acquisition Cycle.

Based on their collective experience, panel participants unanimously rejected the
notion that an adequate job can be done by running acceptance on a "black box" testing
basis. Every testing scheme discussed emphasized involvement throughout thle
acquisi tion. Special emphasis was accorded to ascertaining that initial software
requirements are properly stated. Thereafter, there is a continual checking against
increments of software development.

163



Design must completely and properly embrace all requirements. Code must follow
design specifications. Tests should be conducted to plan and be responsive to
demonstration of requirements and specifications. At the completion of these activities,
there is a place for a final demonstration of the software that is akin to "black box"
testing. This final testing represents only a small amount of the total acceptance
process.

Because of this consensus, the panel was unable to agree on TADSTAND 9 as the
baseline acceptance document, because it primarily addressed a narrow time within the
overall acquisition period. Further, the quantitive values given for acceptance/rejection
were considered dangerously simple when weighed against all the nuances of software.
Applied in the hands of an unknowledgeable software engineer, they could be used to
reject substantially all software ever developed.

On both a practical basis and technical basis, the panel therefore determined that
acceptance must be provided throughout the acquisition cycle and enhancement cycle of
operational software. As a result the following conclusion was reached:

Conclusion 1: Software acceptance criteria must be applied incrementally at
rnewiingfl events throughout the software life cycle.

2. Software Acceptance Criteria Are Most Critical At The Time of Developing
Requirements and Design Specifications.

rhe panel unanimously concurred that the most critical stage to address the
nccptabitity of software products was in the earlier stages of development. If the
proper requirements are not adequately stated at commencement of a software
dev lopment, the whole effort will be jeopardized in time, effort, cost, and technical
quality. All present stressed the need to apply meaningful criteria at these vital early
stages. This not only enforces the previously stated Conclusion 1, but also points out a
problem that many organizations have. Frequently, at this most important stage of the
development process, the managers are in a learning stage and are unable to measure the
acceptability of software deliverables.

Further, this early measurement sets the base for the continuing process of
evaluating software thereafter. Each step thereafter is essentially tracing and
measuring how well a subsequent translation implements the earlier specification. Thus
it is critical to ascertain acceptability at the outset.

Based upon these factors, the following conclusion was reached:

Conclusion 2: The software acceptance criteria should stress the means of ensuring
the acceptability of requirements and the subsequent tracing of requirements
throughout the acquisition.

3. Software Consists of Program Code, Data, and Documentation.

It was agreed that a definition of software was necessary in order to focus on
software acceptance criteria. The panel was working with embedded computer
software. This might be envisioned as a part of an information system component of a
larger (undefined) system, shown in Figure I.

164



OE FE NSIVE SYSTI M

INFORMATION Y' T| M

PHOC DUW HE

Figure 1. Sample Sy.stem With Embedded Software

Within this framework, it was agreed that, for purposes of applying acceptance

eriterti, operational and support software consisted of:

H. All code, including microcode (or firmware)

U. All documentation that specifies this code (e.g., requirements, specifications),
and is required to test and use it (test plans, user manuals).

e, Any data resident with the code (e.g., constants, parameters, initial test data
set).

The point concerning the data set can oe elaborated. The data management
-o t0', - considered to be a part of items a amd b. The data handling should therefore
be ,'ockodc out as a program testing function. Procedures to qualify data should be
icpkidd as documentation. The actua! tcps of qualifying operational data constitute a
,o ' c'!.m question that is a part of using the software. The first data that is used to
,i.cct sol twttre does need to be accepted and is inclu ded Linder item c.

a'imlLusion 3: Software is defined as computer code, constants and parameters,
doeum(Fitation, and initial data set.

-1. _Yi. Agency Applying Software Acceptance Criteria Should Be Independent of the
-'ve ,i£_2 gnc.

Mlhe pane l endorsed !he -'oncept behind independent test and evaluation (or
ulldc[,rident verifieation ;and validation), that the ensurance of acceptable software is
e-st performed by an agency independent of the developer. The value of this method

-,ten. Lrom the true objectivity that can he derived by an independent group. The means
of achieving independence (independent contractor, independent agency, test group, etc.)

5. nil organizational question, and can he solved in different ways. It is most important
that the group he free of the bias that comes from earlier participation and retain that
ohjcetivity through careful control of inter.'faces with the developer. Although this
a-spect of independence was considered very important by the panel, it was considered to
be neyond the scope of the panel charter to fix its usage as a matter of policy.
Therefore, the panel agreed that desirability of independence would be stated as a
conclusion, but that conclusion would be be picked up as an action recommendation. The
qiuetion is suggest(d as a topic for additionn! ,nalysis by the acquisition panel (Panel A).

I

UJ



Conclusion 4. Software acceptance criteria are best applied by a test and
evaluation (verification and validation) agency that is independent of the
developing agency.

5. Software Must Be Accepted At Different Levels And Software Acceptance Criteria
Should Be Addressed To All Of These Levels.

A common difficulty of developing software for embedded computer 'ystems is
that software typically cannot be developed or tested for one level of operation. It is
quite common to have a nested hierarchical dependence of infornation system
components. Software can be embedded within software, embedded within subsystems,
and embedded within an overall defense system. One can never be sure that software
performs correctly or adequately until the entire system has been integrated and
certified. (This is another reason why the panel reached Conclusion 1 - it is virtually
impossible to state categorically that, at any one test point, the software can be totally
accepted and considered to be error free). The panel envisioned an evolutionary
acceptance pattern that commences at the time system requirements are generated,
propagates throughout software acquisition, and finishes at completion of operational
test and evaluation. Once operational, much the same cycle of events is required in a
modified form for enhancements and maintenance of operational software.

The panel determined that it should not attempt to relate this conclusion to
contractual matters for two reasons. First, the conclusion should be equally as
applicable to a development performed solely by the Government, where no contracts are
involved. Second, it was felt that the panel should say what should be done to accept
softwuir. The tradeoffs on how this can best be done should be left to the discretion of
progriio offices based upontheir unique applications, constraints, and requirements.
Therefore, the panel has elected to say that oftware acceptance cannot be completed
until the ernedded system has been completed. However, criteria are applied about
when it iv prepared to make a contractual acceptance based upon the extent of the
technical acceptance to that point.

Conclusion 5: Software acceptance is finally achieved only when the embedded
computer system has been accepted.

;. Software Acceptance Criteria Can Be Applied Now Using Existing Acquisition
Standards.

A subpanel addressed the issue of whether existing acquisition standards can be
used to apply software acceptance criteria. If so, how and why are modifications
required? If not, how should a new standard interface with the existing standard
,tructure? The subpanel determined, and the full panel accepted their finding, that:

a. No new standard is required or even advisable.

b. No changes to existing sta.dards are required to implement the application of
software acceptance criteria now. (A number of the subpanel did develop a
considera-,le number of suggested changes that were submitted independently,
without panel consideration.)

166



1

c. A guide is required for application of acceptance criteria within the existing
standards framework.

Table 1 shows the array of applicable DOD standards that were considered by the
subpanel. The panel also considered MIL-STD-1679, which was not broken out on the
figure. The subpanel determined that an ideal acquisition cycle had to be developed that
could be used as a standard for examining the various documents enumerated in Table 1.

Accordingly, an ideal four-phase embedded computer acquisition cycle was
developed. Within each phase, the applicable standards were summarized in terms of
approval/disapproval events within four categories:

a. Reviews and Audits
b. Documentation
c. Configuration Management
d. Test and Evaluation.

The results of this effort are provided in Table 2.

Based upon this information classification, the various standards were examined to
identify where the provision for the ideal approval/disapproval event is made. Table 3
,ummarizes where these identities were made for the principal software acquisition
standards. Those sections must be correlated to a guidebook wherein the software
manager can be instructed on what acceptance criteria might be applied. As a result of
this analysis, the panel reached the following conclusion:

Conclusion 6: The existing standards, directives, and regulations pertaining to
software acquisition do not need to be modified to apply software criteria, but a
guidebook showing how to relate software acceptance criteria to them should be
written.

7. Software Acceptance Criteria Should Take The Form Of A Series Of Checklist
Items Applied At Approval/Disapproval Events With The Acquisition Cycle.

A subpanel addressed the very complicated issue of the extent to which a software
error theory existed or could be codified for triservice applications. The panel had
previously considered the acceptance standards of TADSTAND 9 to be inappropriate in
that they applied at only one cyclical event and were totally "black box" oriented. In
addition, it was felt that the pass/fail criteria were too arbitrary in nature, giving rise to
the danger of, on one hand, being inadequate to prevent bad software from going
operational or, on the other hand, needlessly holding up fielding a system that would be
adeq ua te.

167



3sve vivo

ONI I VH) MOl Io N

SNOI I tN 1301 SCV1CON

iN3VYSS3SSV A1I8VI13Ii 4

NU I VLJjIt L 11ID N IOJNid RINI

NNC N N]'- 6 a

All 18f 1 N 3 N IVn

I~NOth]IlVfl() C

IA ]')'NVI. .(I C~l )I ]iLS I NI

'N(llv') 11 V IS Io

IM_

0a - CCo CCA-l,'11(lI C



Ir

CL

0 4

z

Or 0 c

- C- W-

4,~~~1 24 c , 4c,@

C,00

C13

c E.
.. 0 3 0. 0

C) 4, 1>- ! ,

C 4,

4, E E 4,,4.

000

03.4

0 0. 0. E

-Cr0-0>

ma CL 0.C

<~4 4,,
:! cn 0 g 0 'D ~

W 0 > _M169



Table 3. Correlation of Standards and Ideal Cycle (1 of 4)

A. System Requirements Phase Sections

Revised
Reviews/Audits 1521 490 483 1679 52779 480

Sys Rqmts (SCR) App. A
Sys Design (SDR) App. B
Prel Design (PDR) App. C

Documentation

Sys Spec App.A,B App 1, 10 App. II, 30
S/W Rev Plan
S/W QA Plan 5.9 3.1
Prog Mgt Plan
Integ Log Plan
Support S/W Plan

Configuration Management

('M/CSA Plan

Test and Evaluation

Test and Evaluation 10.4
Plan

170



Table 3. Correlation of Standards and Ideal Cycle (2 of 4)

B. Specification and Design Phase Sections

RevisedReviews/Audits 1521 490 483 1679 52779 480

Sys Design (SDR) 20. 3.2.6
Prel Design (PDR) 30. 3.2.6

Documentation

Prog Spec 20. 60. 60.4 5.1 3.2.2,3.2.4,
3.2.8

Prog Design Spec 40. 130. 60.5 5.2 3.2.2,3.2.4
Interface Design Spec 10. 20. 5.12.4b,

5.12.5c,
5.2.3Data Base Document 30. 5.2.2.6

Configuration Management

CM/CSA 140. 5.11 3.2.7
Software Errors 5.10.3 3.2.9
Software Patches 5.10.3.2

Test and Evaluation

Subprogram Tests 30.4 5.10.2 3.2.8
Function Tests 60.4 3.2.8

1

I
I
3 171

U



Table 3. Correlation of Standards and Ideal Cycle (3 of 4)

C. Development Phase Sections

Revised
Reviews/Audits 1521 490 483 1679 52779 480

Critical Design (CDR) 3.4 4.4 3.2.6
40 5.12.3

Function Configuration 3.5 4.4 3.2.6
Audit (FCA) 50 5.12.3

Physical Configuration 3.6 4.4 3.2.6

Audit (PCA) 60 5.12.3

Documentation 60.1

Program Design 40.1.3.1(a) 130 60.1,60.2 3.6.2,5.2 3.2
(C5=Part II, etc) 40.1.3.2(a) 60.2.1(b) 5.12.3

60.5

Program Packages 40.1.3.2 4.5 60.5.5 5.5.6 5.0
(program on deliverable 60.5.4.2 5.5.7,
media, in source and 5.6, 5.7
object, plus listings, 5.12.3.1(d)
X-re fs, etc.)

Configuration Management

CM/CSA 3.1.1 Entire 4.5,5.11 3.2.7
document

Software Errors 3.9.1,
5.8.5,
5.10, especially
5.10.3.1
3.15,5.10,

Software Patches 3.2

Test and Evaluation

Performance Tests 3.5 60.4 60.4.4
50 60.5.4 5.8.3, 3.2.8

5.10

172



U!

Table 3. Correlation of Standards and Ideal Cycle (4 of 4)

D. Evaluation Phase Sections
After Product Baseline- Betore Operational Baseline

RevisedReviews/Audits 1521 490 483 1679 52779 480
Formal Qualification

Review (FQR) App. G 4.3.2 App. VI 5.11.1.2 3.2.8
4.4
App. VI
App. XIII

Documentation

Operator's Manuals App. G App. VI App. VI 4.4User's Manuals 60.5.4.1 60.4.4 5.8 3.2.4Test Reports App. XIII 60.5.4.1 5.9 3.2.8

Configuration Management

CM/CSA
Software Errors Para
Software Patches 9.1

Test & Evaluation

Integration Test
System Integration Test 4.4.1.2 4.4.1.2

4.4.2 4.4.2Acceptance Test 4.6.4 4.6.4Tech. Eval. Op. Eval. App. VI App. VI

173



The subpanel defined general categories for classifying software errors within
specifications, code and data. These are provided in Table 4. (The subpanel considered
this a preliminary and therefore incomplete enumeration.) It was felt highly desirable to
develop a statistical data base that could be used to provide direction to software
managers. For example, the subpanel believes that historical data could be used to
indicate when testing has reached a maturity level that permits the next following test
phase to be commenced; an example of how this could work is shown in Figure 2. Here, a
profile of error% detected is plotted as a function of testing phase and time. The panel
speculated that a quantifiable algorithm could be specified as a function of present error
count against peak error count that identifies a sufficient level of maturity to release to
the following testing phase. Once a sufficient data base of software errors exists, then a
software error theory for different generic classes of software could and should be
developed.

Within the constraints of present knowledge and statistics, the panel concluded that
the software acceptance criteria should be applied as a subjective checklist at each
approval/d is approval event. But it further felt that the JLC should sponsor the effort to
collect error statistics from embedded computer software developments and derive a
working error model with this base.

Conclusion 7: Software acceptance criteria should be developed as a checklist of
subjective criteria for imposition at all approval /d isapp roval events within the
software acquisition cycle.

Conclusion 8: The JLC should sponsor the collection of software error statistics on
all embedded computer software developments in order to build a statistical base,
and develop a software error model using this base.

8. The JLC Should Mandate the Use of Software Acceptance Criteria and Prepare a
Guidebook for- Sotware Managers to Use.

One subpanel attempted to define procedures for applying software acceptance
criteria. These procedures in effect amounted to the checklisting of criteria by
acquisition cycle event.

In discussions with the entire panel, it was determined that event procedures could
be correlated to the standards acceptance correlation (Table 2) to serve as an interim
guide for a software manager to apply software acceptance criteria. A concern existed
with the time dependency or criticality: that less exists to be evaluated at PDR than at
CDR, and so on.

A criteria-event matrix to reconcile concerns of acceptance criteria relating to
acquisition milestones and concerns of acceptance criteria relating to the particular
product was proposed. A list of acceptance criteria would be drawn up (one list for each
product). Then each criterion would be correlated to the milestone(s) concerned with
checking that criterion. A scale of involvement, running from 0 (minimal) to 3 (heaviest
involvement) for each milestone, can then be applied.

Thus, a user could observe the intersections of the product acceptance criteria with
the particular successive milestones to define what criteria will be scrutinized (and at
which depth) at each successive milestone for that product.

174



Table 4. Software Error Categories

Software Specifications

1. Unnecessary functions
2. Incomplete requirements or design
3. Inconsistent requirements or design
4. Untestable requirements or design
5. Requirements not traceable to higher specifications
6. Incorrect algorithm
7. Incomplete or inaccurate interface specifications

Code

1. Syntax errors
2. Noncompliance with specification(s)
3. Interface errors
4. Exception handling errors
5. Shared variable accessing error
6. Software support environment errors
7. Violation or programming standards
8. Operational support environment errors

Data

1. Accuracy
2. Precision
3. Consistency

175



V)
LU
F-

LU LO

F- c-

H- - n C L)U J 0

U) a a 0

U) 2 -~ LU LU

DLU

N Z H
LU LL U

LU M U

LU Ll LU ) Z

I.-LU LUJ - V)

LU C 0 -j Lu~
H -) CL C)

LU O H
0 I V ) 0 ~

flJ H LU

V) U)Z F
-LU r LU

Z) >- L

000 u
. F- II

MOU Ln H

OHZUJc LU

LUA

LUI

Lu

176



It was agreed that the guidelines should be for "novices", and should provide a
common understanding of what is required from all participating parties: Program
Manager (PM), contractor, user/maintainer, etc.

It is necessary to establish a list of the applicable products for the acceptance
procedures and acceptance criteria. A list of possible candidates came from Figure I of
Panel A's Final Report on Software Acquisition and Development. Of the documents
listed there, the following were chosen. (The system level spec set was not on that
chart, but was included in the candidates for acceptance procedures and criteria because
it is a source for later or succeeding documents which require such acceptance criteria
definitions.) The selected sets were:

a . The set of "system level specs" which comprise the Functional Configuration
Identification at the time of the Functional Baseline at DSARC 1, though this
FCI set is updated as necessary after the Functional Baseline

b. The Development (Part I or B 5) Spec or Performance Requirements Spec

c. The Product (Part 11 or C 5) Spec or Product Design Spec

d. The CPCI product (code)

e. The CPCI Test Plans

f. The CPCI Test Procedures

g. The CPCI Test Reports

h. The Handbooks and Manuals (User's or Operator's Handbooks, etc).

It was decided to exclude specific acceptance criteria for the CM, DM, QA, and CP
Development Plans which appeared on Panel A's Figure 1. Though they are constraints
on the development of the product CPCIs, they are not specifically part of the product.
Also, these items could be added at a later date. The same exclusion was decided upon
for the CM status reports and change processing forms listed on Panel A's Figure 1. The
VDD shown on Figure 1 was considered to be part of the CM package, not as a product in
the strict sense, so it too was excluded from consideration as a product for which
acceptance procedures and acceptance criteria would be developed.

For these criteria to have real significance in a program, the software manager
should be provided a suggested "action" to take for failures. A truly useful action list
requires a three dimensional perspective. The three dimensions are failure severity,
total cost of correcting the error, and cost schedule slope (rate of extra cost or adverse
schedule slippages the longer the error remained unfixed). Classifications of priorities of
correcting errors were developed as "emergency, urgent, and routine", interpreted as
functions of cost and schedule slippages. Specifically:

177



a. A failure requiring an "emergency" fix was a failure which, if not fixed,
imposed rapid increases in cost (possibly including safety considerations) or
caused ever greater schedule slippages.

b. A failure requiring an "urgent" fix was one which could cause moderate
increases in cost or moderate but perpetually increasing schedule impacts
(delays) the longer it remainded uncorrected.

c. A failure classified as "routine" was one which caused no particular cost or
schedule slippage no matter how long it remainded uncorrected.

This action classification was considered to be a "nonmandatory" guide of how
decisionmaking might be undertaken for determining how (if at all) to fix different kinds
of software errors, depending upon the consequences of not correcting the errors as the
program progressed, or of not correcting them immediately. Different systems might
respond uniquely.

Originally, the panel intended to use the 5 error classifications found in
MIL-STD-1679 and TADSTAND 9 as the error types. But though these are not
specifically limited to failures found during testing, they are defined in MIL-STD-1679 in
the section on testing and seem to refer only to errors in the CPCI software itself, such
as might be found during acceptance testing. Since it had been previously agreed that
software acceptance criteria would look at all aspects related to the embedded computer
system software, including documentation and support software, the subpanel decided to
define some failure categories that could also include support software and
documentation. These were boiled down to four failure severity categories (including
operation software and documentation):

a. Severity 1: "Prevents accomplishment of its primary function, jeopardizes
safety, or inhibits maintainability of the software."

b. Severity 2: "Degrades performance or maintainability, with no
workaround."'

c. Severity 3: "Degrades performance or maintainability, but a workaround
exists."

d. Severity 4: "Doesn't adversely affect performance or maintainability" (for
instance, documentation errors transparent to users).

The panel determined that the most important output of applying acceptance
criteria is preparing a guide for the software manager-to take acceptable action where
violations of acceptance criteria are encountered. In a three dimensional matrix, the
following "actions" were defined to be required, depending upon the combination of
failure severity, total cost, and slope (rate of change) of eventual cost and accumulated
schedule delays:

a. 'R' "Rework it right now" (fix it immediately, even if this requires that
other development or progress be halted for the moment).

178



b. 'C' = "Correct the failure while continuing the development activity, etc."

c. 'L = "Proceed with no action" ("live" with the failure, and with a note to
correct later if possible).

For purposes of determining failure severities, a failure or deficiency could be
either 'singular' or 'plural'. That is, a large aggregate of similar small errors might have
the effect of a single large deficiency, in that such an accumulation of "small" failures in
some cases might have a severe impact if not corrected. The failure severity was thus
taken to be equivalent to its impact singly or as a related group of failures, if the latter
would have a more severe impact that must unavoidably be dealt with.

~-0

R SEVERITY I ERROR

HIGH COST -RR SEVERITY 2ERROR
SCHEDULE IMPACT LIP SEVERITY3ERROR

RSEVERITY 4 ERROR

0
U -

"J 0

C C R SEVERITY I ERROR
MEDIUM COSTi C C R SEVERITY 2 ERROR
SCHEDULEIMPACT L C R SEVERITY 3 ERROR

L L C SEVERITY 4 ERROR

IC C C

MEDIUM COST/ C C C SEVERITY 2 ERROR
SCHEDULE IMPACT L C C SEVE oR

L L SEVERITY4ERROR

Figure 3. Error Severity/Cost Matrices.

179

II



V AA103 465 AIR FORCE LOGISTICS COMMAND WRIGHT-PATTERSON APR 0O4 F/6 5/1

AUG 79PROCEEDINGS OF THE .JOINT LOGISTICS COMMANDERS JOINT POLICY COOR--ETC(Ul

UNCLASSIFIED N

mEEEhEh4h
* *hmmh********

mEEEEEEEmoEEEE
EE***E***E*EEE



A high slope of schedule impact meant that for whatever period of time elapsed
before fixing the failure, the cost per day was very high for not fixing it, or the schedule
slipped badly each day that the failure was not yet fixed. The total cost included
estimated costs for "average" delays in correcting the failure, as well as one-time costs
unrelated to how quickly or slowly the error was corrected.

Finally, acceptance procedures need to be defined for each of the eight product
types for which acceptance criteria are to be defined later. Acceptance procedures were
distinguished from acceptance criteria as follows. Acceptance procedures were taken to
be the types of actions which might be employed, such as different types of 1/0 or
exception analysis, to help determine whether or not the product satisfied the
requirements. By contrast, the acceptance criteria amounted to the presence and
adequacy of various quality factors, such as adherence to various specified sound
programming practices, or to presence and quality of input descriptions, etc.

The "strawman" starting point for developing the rough draft of acceptance
procedures for each of the 8 products, was pages 95-100 of Volume 11 (Software
Acquisition Process) of the Management Guide to Avionics Software Acquisition (ASD TR
76 11). Pages 95-100 deal with software verification and validation (V&V), but contain
lists of V&V activities which could be applied. A separate list was given for each of the
following areas listed in the document:

a. Requirements Analysis

This was taken to represent both the system level specs (FCI set), and the
development (Part I or B 5) spec of performance requirements. To the list of
V&V techniques for Requirements Specs were added the techniques of
"Document review" and "Develop Traceability Mappings, into successive
documents". The original list included the following for requirements
analysis: independent derivation of software requirements from system
requirements; comparison to standard reference systems or similar systems,
previously developed; functional simulations and modeling of process
allocations; timing and sizing analysis, and the establishment of budgets for
critical system parameters; and development of a requirements chart which
dent ifi es interrelationships between requirements.

b. Design Analysis

This was taken to represent the product spec (Part 11 or C 5, including data
base spec) or program design spec. Only the category of "document review"
was added to the analysis techniques listed in the Guide section. The entries
included: correlation and traceability between design elements arid software
requirements; functional simulation to assess design integrity and process
allocation; independent derivation of equations; and algorithms; comparison
with standard references and models; comparison with methods which have
been proven in operational systems; mathematical and logical analysis.

180



c. Code Analysis- of the CPCI itself

Three categories of V&V techniques were added: "interface analysis", which
meant finding all calling hierarchies; tracing of 1/0 variables throughout the
program, which meant taking a critical variable and "chasing" it through every
occurrence of that variable in the program to be sure of proper initialization,
scaling, and use, etc- and exception analysis, which meant checking error
detection and interrupt handling and queueing, etc. These were added to the
original list, which included the following: version comparison; text editing
and syntax analysis; standards auditing; equation reconstruction from the code;
data structure analysis; flowcharting and logic reconstruction; and manual
code i nspecti on.

The "Testing" phase in the report would correspond to the three separate categories
of test plans, test procedures, and test reports. The paragraph did not break these out
separately by document, but gave the broad sense given below: module testing (verify
that individual software functions satisfy the corresponding software requirements);
interface testing (verify that software-to-software and hard ware-to-sof tware interface
functions are properly implemented); and system testing (verify that the operational
system possesses the required system capabilities and satisfies the appropriate
performance requirements). The panel then added these methods of analysis, applicable
both to test plans and to test procedures: documentation review; requirements
traceability analysis; coverage analysis, meaning how well test cases cover the possible
input space, including both nominal and extreme values to exercise as much as possible of
the code; and resource analysis, meaning analysis of the test bed resources and proper
use of these in the tests.

The following techniques of acceptance procedures were added for the separate
category of test reports: independent data reduction and analysis; independent review of
test cases; and document review.

Finally, acceptance procedures or techniques were listed for handbooks and
manuals, meaning user's or operator's manuals, as follows:

a. Document review

b. Mapping traceability to operator interface portions of the development
(performance requirements or B 5/Part ID), and product specs (Part [I/C 5) or
program design spec.

c. Completeness analysis (have all possible contingencies been considered and
taken care of, and have all functions been provided for?).

d. Tests using operators.

A considerable effort was occupied in trying to find a common definition or
terminology for "system level specifications" (the set of system specs and possibly
segment system or subsystem specs which together comprise a Functional Configuration
Identification (FCI). The FCI name was settled on, as identified in MIL-STD-480, with
parenthetical explanations of some of the other names it may go by.

181



The FCI (sy.item level set of specs) was the first of the eight products for which a
rough attempt at defining acceptance criteria was begun.

This provided a model for all eight sets of acceptance criteria, as it was decided to
list acceptance criteria one by one on the left of a table, with the previously mentioned
intersections of criteria with particular milestones on the right. In order to show the
relative importance of the various criteria in the different milestones, an importance
scale was deemed necessary, ranging from 0 (least prominent in that milestone) to 3
(most prominent in that milestone):

a. 3 = "primary approval cycle" (great emphasis on this criterion at this point)

b. 2 = "the product is the basis for activity, such as traceability, but not the
focus of primary emphasis"

c. 1 = "only changes in its status will be looked at"

d. 0 = "status check only (configuration accounting only; no actions)".

Using this criteria/milestone intersection code, the following table was developed
for the FCI (system level spec set) checklist of acceptance criteria:

System level spec set
(FC) criteria SRR SDR PDR CDR FCA PCA FQR

1. Are s/w functions adequately
defined for the system? 3 3 2 2 1 1 2

2. Is a test requirement
adequately defined for the
system? 3 3 2 2 1 1 2

3. Are s/w functional require-
ments consistent with user
requirements? 3 3 2 2 1 1 2

4. Is the FCI in agreement
with applicable documenta-
ti on standards? 3 3 2 2 1 1 2

5. Are s/w functional
requirements consistent
with interfaces? 3 3 2 2 1 1 2

The panel unanimously concurred that an interim guide should be drafted and issued
immediately for use now by software managers. Accordingly, the panel has prepared as
Appendix 8 a summary of the material from which this guide can be prepared. The panel
urges the JLC to prepare the interim guide from this material and issue it.

182



I

Additionally, the parel believed that these materials were already of sufficient
value and should be applied to all ongoing developments. Accordingly, they believed that
the use of the interim software acceptance civiteria guidebook was important enough that
the JLC should mandate its use. The panel has prepared a draft of such a mandate for
JLC consideration as Appendix 7.

Finally, the panel addressed the question of the long term problems associated with
applying software acceptance criteria. It was agreed that, while the interim guide should
be prepared and issued quickly, it reflects the results of a short time effort and will not
be a completely satisfactory guide. The panel agreed that the JLC, concurrent with
issuing the interim guidebook, should start preparation of a final version of a triservice
guide. The panel believed that a single unified set of software acquisition standards
should be employed by all services. It was agreed that a final guide should be prepared to
operate for both the final, unified standards and for the prior standards.

Conclusion 9: The JLC should mandate the use of software acceptance criteria for
all sot ar evelopments.

Conclusion 10: The JLC should issue a software acceptance criteria guide for use
by sortware managers.

Conclusion 11: The JLC should continue work to develop a common, unified
triservice acquisition standard.

Conclusion 12: The JLC should develop a final software acceptance guidebook to
supplement existing acquisition standards and any future unified standard.

RECOMMENDATIONS

1. The panel recommends that the JLC adopt a triservice policy that mandates the
use of software acceptance criteria incrementally throughout the software life
cycle. On a short-term basis, this mandate could use the draft material contained
in Appendix 7 as its basis.

2. The JLC should develop an interim guidebook to software managers that gives them
the insight to implement the software acceptance criteria mandate through
application of existing regulations and standards. The panel has prepared draft
materials that can be used as the basis for this guidebook (Appendix 8).

3. The JLC should continue work toward developing and using common embedded
computer software acquisition standards for all services. These unified standards
should explicitly include software acceptance criteria.

4. A final triservice guidebook should be developed based upon the interim guidebook
(recommendation 2) that gives practical working level knowledge of applying
software acceptance criteria. This guidebook should be developed for existing
standards and for any triservice standard.

I
I

183I



5. The JLC should require that a record of software acceptance criteria failures be
maintained so as to provide a statistical error base for improvements to the proce..

6. The JLC should sponsor the development of software error models of generic
classes of software.

184



APPENDIX 1 - PARTICIPANTS



I
1

APPENDIX 1 - PARTICIPANTS

CHAIRMAN: Mr. R. DEAN HARTWICK (213) 831-0611

Logicon, Inc.
Strategic and Information Systems Division
ATTN: MR. R. DEAN HARTWICK
255 West Fifth Street
P.O. Box 471
San Pedro, CA 90733

Commander (202) 274-9651/2
U.S. Army Material Development and Readiness AV 284-9651/2

Command
ATTN: DRDCE-RR
(MR. BRIAN BUTLER)
5001 Eisenhower Avenue
Alexandria, VA 22333

Director AV 283-4030/2366
U.S. Army Material Systems Analysis Activity
ATTN: DRXSY-CC
(DR. A. BRINTON COOPER, 11)
Aberdeen Proving Ground, MD 21005

Corn mander (301) 278-2775
U.S. Army Test and Evaluation Command AV 283-2775
ATTN: DRSTE-AD-S
(MR. J. GARY NELSON)
Aberdeen Proving Ground, MD 21005

Con mander AV 441-3176
Naval Air Development Center (215) 441-3176
ATTN: Code 504
(MR. RICHARD MITCHELL)
Warminster, PA 18974

MR. FRANK A. PHILLIPS (301) 863-4787
Systems Engineering AV 356-4787
Naval Air Test Center
ATTN: Code SY-43
Patuxent River, MD 20670

Commander (714) 225-7015
Naval Ocean Systems Center
ATTN: Code 9133
(MR. GEORGE TICE)
San Diego, CA 92152

I
185I



MR. STANLEY BROWN (505) 264-5289
AFCMD/QA AV 964-5289
Kirtland AFB, New Mexico 87115

MR. ALTON PATTERSON (916) 643-4762
SM-ALC/MMECP AV 633-4762
McClellan AFB, CA 95652

MR. PAUL REIMANN (801) 777-7231
Ogden ALC/MMECA AV 458-7231
Building 1205
Hill AFB, Ogden, UT 84056

MR. BOYD WILSON AV 945-7211
San Antonio ALC/MMECD
Kelly AFB, San Antonio, TX 78241

MR. ROBERT E. ALGER (205) 532-1257
Teledyne Brown Engineering
Research Park
Huntsville, AL 35087

DR. ROGER R. BATE (214) 238-3052
Texas Instruments Incorporated
P.O. Box 226015 MS 295
Dallas, TX 75266

MR. GENE F. WALTERS (408) 734-3571
General Electric Company
450 Persian Drive
Sunnyvale, CA 94086

MS. MARILYN S. FUJII (213) 831-0611
Logicon, Inc.
Strategic and Information Systems Division
255 West Fifth Street
P.O. Box 471
San Pedro, CA 90733

186



I
I

APPENDIX 2 - BIBLIOGRAPHY

I
I
1
1
I
I
I



APPENDIX 2 - BIBLIOGRAPHY

The following documents contain policy, requirements, and guidelines that
pertained to software acceptance criteria and were consulted by the panel.

1. DOD Directive 5000.29, Management of Computer Resources in Major Defense
Systems, 26 April 1976.

2. MIL-STD-480, Configuration Control - Engineering Changes, Deviations and
Waivers, 30 October 1968.

3. MIL-STD-490, Specification Practices, revised 18 May 1972.

4. AFR 800-14, Volume I, Management of Computer Resources in Systems,
12 September 1975.

5. AFR 800-14, Volume II, Acquisition and Support Procedures for Computer
Resources in Systems, 26 September 1975.

6. MIL-STD-483 (USAF), Configuration Management Practices for Systems,
Equipment, Munitions and Computer Software, revised 1 June 1971.

7. MIL-STD-1521A (USAF), Technical Reviews and Audits for Systems,
Equipments and Computer Programs, I June 1976.

8. MIL-S-52779 (AD), Software Quality Assurance Program Requirements,
5 April 1974.

9. MIL-STD-1679 (NAVY), Weapon System Software Development, 1 December
1978.

10. TADSTAND 9, Software Quality Testing Criteria Standard for Tactical Digital
Systems, 18 August 1978.

11. U.S. Army Test and Evaluation Command, Test Operations Procedure,
Software Testing, TOP 1-1-056, 15 November 1977.

12. Management Guide to Avionics Software Acquisition, Vol. 2, Software
Acquisition Process, AD/A-030-592, Logicon, Inc., June 1975.

13. Software Acquisition Management Guidebook Verification, ESD AD-A048-577
(TR 77-263), August 1977.

14. Airborne Systems Software Acquisition Engineering Handbook:

a. Verification, Validation, and Certification, 30323-6009-TU-00, September
1978

b. Reviews and Audits, 30323-6006-TU-00, November 1977

e. Quality Assurance, 30323-6005-TO-00, November 1977

187



I

I

APPENDIX 3 - LETTER TO PANEL PARTICIPANTS

I



255 W. Fifth Street, P.O. Box 471
San Pedro, California 90733 LIGICOl
(213) 831-0611

15 March 1979

To: Members of the JLC Panel on Software Acceptance Criteria

Thank you for agreeing to serve on the Software Acceptance Criteria Panel of the Jolfil
Logistics Commanders Joint Policy Coordinating Group on Computer Resoure',
Management. It will be a pleasure to serve with such a distinguished group at t1w
Monterey workshop.

By a separate mailing you will receive an agenda for the workshop. I am writing to giv,
you more information on what our specific panel will accomplish. The charter of our
panel is to develop a draft document that delineates criteria for the acceptance of
embedded computer software, with the goal that this draft would eventually lead to i
triservice standard. Rather than attempt to develop a totally new standard in the short
time available to us, I propose to use the Navy's TADSTAND 9 (attached) as a baseline
document for our work.

I will meet all of you on Monday following the general workshop assembly. Detailed work
by our panel should commence on Tuesday morning. At this time, we will discuss panel
objectives, review existing practices, and develop a set of detailed problems to be
studied. We will then break into subpanels, each of which will have topics to investigate
and resolve during the afternoon. On Wednesday morning, each of the subpanels will
report its findings to the panel. We will then develop directives for changes to
TADSTAND 9. Each of the subpanels will then reconvene with a rewrite assignment for
Wednesday afternoon. On Thursday morning, the entire panel will review and approve
suggested changes. The results at this time will then be summarized for presentation at
the general assembly on Thursday afternoon.

I'd like to ask each of you to give some thought to the problems associated with
developing a common standard in this area, and possible solutions to problems. Some
areas that I think will require considerable work on our part are:

1. What level and type of unresolved software errors can be tolerated before the
software is considered to have failed acceptance?

2. Is the acceptance a one-time event or should there be a formal acceptance of
increments throughout the development cycle?

3. How can acceptance criteria be applied for elements of software that are
subsequently integrated and reaccepted a- a portion of a larger software
system or weapon system?

I
189I



15 March 1979 LOGICON
Page 2

4. How would such a proposed standard interface with other standards that
regulate software acquisition management?

5. Should acceptance criteria be limited to "black box" testing or is it appropriate
to analyze supporting documentation and design?

6. Can one set of criteria serve as a standard for different types of embedded
computer systems or is it necessary to develop a family of criteria?

7. How are vendor/commercially available software packages (e.g., operating
systems) that become an integral part of the embedded system treated in
accepting operational software?

8. What is the role of the acceptance criteria standard for maintenance of
operational software?

In particular, any standards or practices that you know of which relate to this area are
solicited. We will have a library at Monterey that will be stocked with the appropriate
military standards (e.g., MIL-STD 483, MIL-STD-490, MIL-STD-1521A, MIL-STD-1679,
MIL-STD-52779(AD), SECNAVINST 3560.1, various DIDs, guidebooks) for our use.

I look forward to interesting sessions with you all in Monterey. If you have any questions
or thoughts, please call me at (213) 831-0611 or the workshop coordinator, Frank
Barricelli, at (201) 544-2937.

Sincerely,

R. Dean Hartwick, Manager

Planning and Development

RDH/pmd

Attachment

190



r

APPENDIX 4- PANEL HANDOUT

i
1
1
I
I
I



AGENDA FOR SOFTWARE ACCEPTANCE CRITERIA PANEL

TUESDAY, 3 APRIL 1979

0830 Convene

0845 Presentation of Service Views

- J. Gary Nelson / U.S. Army Test and Evaluation
- Richard Mitchell / Naval Air Development Center
- LTC Thomas Jarrel / Aeronautical Systems Division
- Alton Patterson / Sacramento Air Logistics Center

0945 Review of Objectives and Problems

1015 Formation of Subpanels

1030 Coffee Break

1045 Subpanel Meetings

1200 Lunch

1300 Subpanel Meetings

1630 Subpanel Presentations

1730 Adjourn

WEDNESDAY, 4 APRIL 1979

0830 Consolidation of Subpanel Findings

1000 Formation of Rewrite Subpanels

1030 Coffee Break

1045 Subpanel Meetings

1200 Lunch

1300 Subpanel Meetings

1630 Subpanel Presentations

1730 Adjourn

1

I 191



THURSDAY, 5 APRIL 1979

0830 Consolidation of Subpanel Findings

1015 Coffee Break

1030 Preparation of Panel Findings

1130 Lunch

192



ii

STANDARDS INTERFACE SUBPANEL

ASSUMPTIONS -

1. Interfaces with MIL-STDs 1679, 483, 490, 1521, 52779, SECNAVINST 3560.1

ISSUES -

1. How does proposed standard interface with other existing standards?

2. What are difficulties of generalizing to a triservice applicable standard?

3. What is applicability to maintenance and user organization?

OUTPUT -

1. Define position of acceptance criteria standard within existing

specifications tree.

2. Determine requirements for triservice acceptability.

3. Define applicability to user and maintenance organizations.

193

.

193 =

U



ACCEPTANCE PROCEDURES SUBPANEL

ASSUMPTIONS -

1. Interfaces with MIL-STDs 1679, 483, 490, 1521, 52779, SECNAVINST
3560.1

2. Interface with specifications tree defined as single document.

3. Well-defined error theory.

ISSUES -

1. Where in development cycle are acceptance criteria to be applied?

2. Is acceptance testing self-contained or does it include results of
intermediate testing?

3. What are test bed requirements?

4. How is software acceptance testing interfaced with system
acceptance?

5. Should acceptance testing be limited to black box testing?

6. How are off-the-shelf software components handled?

OUTPUT-

1. Determine where acceptance criteria are to be applied.

2. Define software acceptance testing vis-a-vis system acceptance.

3. Determine how off-the-shelf software will be accepted.

194



I'

SOFTWARE ERROR THEORY SUBPANEL

ASSUMPTIONS -

1. Standard to be applied by program offices with average or marginal
technical expertise.

2. Procedures for application defined elsewhere

ISSUES -

1. What are meaningful categories of software errors (severity,
function, etc.)?

2. What are metrics by which errors are collected?

3. What is the measure of acceptable levels of error?

4. Does error theory vary in different classes of software?

OUTPUT -

1. Define categories of error.

2. Define levels of error acceptability.

3. Classify software classes to which error theory will be applied.

195



SUBPANEL FINDINGS FORMAT

1. Objectives

2. Issues

3. Analysis

4. Conclusions

5. Recommended TADSTAND 9 changes

(In all cases, state briefly what recommended change is followed by
appropriate cross reference or analysis to justify.)

1.1 Changes
1.2 Additions
1.3 Other documents or specification changes
required to enact

196



I
I
I
I
I
I
I

APPENDIX 5 - PANEL PRESENTATIONS

I

j

I
1
I
I
I
I
I



PRESENTATION MADE BY

J. GARY NELSEN

U.S. ARMY TEST AND EVALUATION COMMAND

TO

SOFTWARE ACCEPTANCE CRITERIA PANEL

3 APRIL 1979

197



IC V

C= LIA--j

C=1. LUC/) LAJ

V) x

C= W V14
LAI I- L L (

C)-Z

I=

C= J

LA-A
C= *EA

th z

0= 0 i z z L 0 >

(3z (A- Q- 0 ) LhU

- ~ ~ L U T n

L199



CU~

200



IOI

-AJ

-AI

m~J m

ac

a: -

me C-2

C002

CD -J- Ia

P- CA

201



hi.JJ

C= Ld.

hiAl IN-

La.i C= La AJ
I-- C00 C0- I--

COO. _ 10 LA-I I---

-AJ C= - m

-c C= LAm = A.

Li~L&J C=I

= ic sacI ac La _ 2

C= Lid =
6&- -. E _ t =

= L - ___Li-

_OO CI 013C- LiAl

-~lo p2Epp- - _A CD -

-AJ sac Im&.1 = o

cE= Lai -

C. -L C0 C-2

... J -J C.2
Is Lai co LJ

Li-I .. -. a CL

C02 Z;202



16

lU

40 4.

Iin

01

It 2w~

2O
I. ~kti tIE )C

oeC0.

__ _ CL * Q C cC

UF

24, CQ w

w . L

I3S I24 a
*sc* I

3 203



C00 ZLJ C/

= =- -

-. LL = IZ<LJZC
- 0<>0

IncI

C0024



C=I1

h.*

- z Cm

L&) LLJ

C) ~ LA0
0 V) Z

= z V)

1.". LAJ C

LAJ >< LA- V) L6
S LA&J 0 Vt) LAJ

205



I

21

Il Q. 00 U
L E.:

"mIl

INm

Sam of

'0 % . "

206



iv

20



* c

-. .o )
400 

V0

0 0 0 0 e. O 0 0 0 . 0 0J

* --

ai .. 3 V5 u i.
=23

... 1. S. A. = c

4 V

V a

*A

-0a

oa

F. -• - -

8, ,-_of a 8, 2

20 

L

i. a 6t6~ *as ~ ~ do 2

~.a~i- 208



-I --- ------

on4p zcr4
dic r 4Jj i 4 ii; 0 c

-- -- -

3--

0

------------------ - - -

-A~

2..

u 0
a 

0

220



<

<

VI)

z

0 0
z

- 210



I

''p
w' w

t, !f0 'Em

II

211

--'--- _ _ _ _ .. . . - _ _r ... . 11 . .. .. . . . .. .. . . . • I_ _ '_- _ . . .Il, _



z 3

-AJ
>& -JJo LLJ L-Li-

hI~ L0 0LZI

LL&J

6- zA
LAJ-J

C__ LAJ

C- >
LUL

z <2
0 LA0

C__ LU) Z~

CCL,

V)-

com Z 0 z

C=- = LUE

LOL

1 01 L A .)Y v , ~j V )L j

ULJ
LUL& LL.j

= 0

212



-.. : -- ---- I li i li1I I ii tII I, I i 3

71- IN I 1H 1
.. . ..... i ""I"1 """ I " I ""

-- - --. , - - J j i

41"J
ft !j I I j I, , , 

i

I - ---------. ..-- - . . 4 - ... . . . . .. . .4 1 .- -

. .. . ... , ,-,,-, " 1, 17" 1 , 1 i t

.2 44 .2-1~

~AFEUR C-3 C-aabi~ Mari

212

I~~-- -.......J-I- -L- . -I-..- -.HJ-iJ J-ll . 4

----------- ----- J i ] 11 i i i i] -t, iIii i! i- iii

_____ * ' iUU I r I I "l I ii 1 . . ...1u iI

/ I I li iiI I~ l l l li' I iI IIIi'I! l

.. ..i :1 i ' ' ' I l I i U ' "i :' :;l

lil ,.ti .i , ii li , . , i, - - 2,.ll~l I l.

.... ~-' ..-........ !Jl' .J241,': / ' IZ ';

/ i i I I I I iiI I I I Ii i I I i

. 1 , . ,, i . .. I , I -l i. - .I*0 , Ii

-A -' / ; i'l!IItI!I! ,!1 S

, ,r', " I' ' , I' ., ,, ,,,1-
SAFEGUAR t i C / Caaity arix41I I

, ..I, .II,1 / ,II .I 1 , l

213ll .I , ll

-3. ..d iiII i II , ..Ii,,i'



I ' I

... . .. ,...../

I 

I

. .... . -. ... .. . I I
m # I S J + l + eP+ I f 1 I l. +

i ' ' I ' I " -I

I'I -- ----- ...- I--~ t .... .-I.

-. t " I " -, • " e " " " 
. = " . . . .

- - I. -- -1

, - I .I ! ! I i i ,
a,,i a -

~;., : 
.."

, .. . . ..... .. I .,* . . : ..... ..... .List. ...l!...... .

SAFEGUARD PW CapbUiit h .-ix

214

. . . . .... ..a 
.. 

+



z izi~ z z z z zi IIZI Oi, I

5 0 0 * S S

,a 0. go

0! 0: 0: 0: a a a aa. . ., .. . . . ., .. S . .
a a a aa a ll * a *u m

- -- - 7-7-7-7-7- -- - - a-7 - - a-- - -- -

a 19 " aa a

a, WE I

I I
S0. 1 .o & o o S ! : . a c r

"" w ;w "'"f" ' "92 .00i

i'-."S S S . S. .- . s . S. .

do z z 4z
n 2 44 It1 a 9a

- -0 - 6 . 0

I V I I I t I C " I I I * I "* I

a - -o-"°°-&.'- e• .o °& go -- - &° ' "°"

• I ' - ,,.,

8.-.

so as

40b-

a was

q 0 4 at a Z a . a- -aaa-

- *. 6215 U : -

maI a i~za- r



C..* j LL

LA Xf 0 &J0

C. C=- Cn
Lo. 102&f-i C- < LL -j

*= CC)-,

0 C, J

-~~ 00 a.

LA -~ Ln >-Z

< L" LL.Z

0J Z LA 'CZ L

L.16 0Z L AJ I.. L 0 C
'-C) z L) C.

C= Lh ~- 0 '

-~ Z C C)
ICz 0~ L)aJ

Ln I- R ^

_jLLJ u (

'Cj CA~J LPLJLJ LM

-4 4- - --

216



LA-J

-L
2c 0

__J 5& z

=c LaJ

Co P*~j =~ -JL-~~,0

-A -L < ~
--

0.' - _j
ME ~ ~ oz <V

Cm=

I-

217

-MloU ilm



c
p..

l-- too..

MC &

C.2 La

218a



II
I

TO

SOFTWARE ACCEPTANCE CRITERIA PANEL

3 APRIL 1979

1 219

!I



IL

L-J

- ctr

It) C.

- 0.. 221



LWi

-4LL

- 2: C/ C Cl) '-i L
C- -~j -: Ca-

-~~~2 = =->c~ ~ a

"_ LL- LJLI

LU.

U- Cj LL) = -1 LU U =
Lii LL- =. Z- LU) I ft.

-J J-1 -- L C C % C
fUf- -- (V - W - M c C -

>- >- -: L- z F t- LU LI..

V) ) V CZ <222-



I- C

w CD)
CD Lu

L- _2: c
~ LU C/~ c

CL. CL C3 C)

C,- . / - D C

LU ~ - -

- 1- CD

= -

I- - L iLU. CD <cC.~ 0.. 21 C - -. .

IV -l a * a

c~2:

44 C)L

I-- LU LJ - - C

:2-W LUI
Lu w~2

CL- LU L
C) cc1

LLJ C Lu C:. L

:E: W l Lu -
*1- Lu) C

223:



LaJ

L-

LaJ
0-

CA,

V), C,,
t-1) LAI0-

I . 1 C)l C
i L - C)l

CLI C) -L

U- fr-I

CIO, C-0 C) )

-l. I- cl-

L- ) -:: CZ 9.0t
-z C, -

- L.J -c - -

-/ Laj

I LLI
cn =. :c

C) J M C:<CC
=i CD C-) (30

LU C- C-)LL
-C

IL ~ (L J

I-224



OC-

LALU

- -,

LUL

I =

LUL

C-225



LUJ

LUJ

LU-

C

LL.
-LJ F-I~-) >4

00LU L4

~' 226



ICI

coI
Cfd1

~-E1
;7

LU0

(.227



MINUTES OF PRESENTATION MADE TO

SOFTWARE ACCEPTANCE CRITERIA PANEL

3 APRIL 1979

I 229



MINUTES- Morning, 3 April 1979 JLC PANEL D

Dick Mitchell, of the Naval Air Development Center, discussed the Navy's view. His
organization is responsible for development all the way through life cycle support. It
handles major weapon systems that range from 1/4 to 1-1/2 million-word programs, plus
support sofware-mostly ASW, but including all avionics, and including trainers. This
software is provided GFE (often to contractors). NADC builds tapes from the Center,
and also requires Contractors to use NADC facilities in development software.
Contractors are largely used but NADC has set baselines and system requirements since
P3 system was introduced and subsequent major updates have been made. The software
baseline has been maintained. NADC uses incremental builds, etc.

NADC is also able to build up in-house expertise in technical areas such as navigation.
NADC worries less about whether the code is correct, than about whether it properly
fulfills the functions. NADC provides contract GFE algorithms to the contractor.
NADC requires that contractors relocate within 10 minutes of NADC, to assure
continuing contact; sometimes contractors have their own development stands, but if so,
an equivalent exists at NADC. Each project will have its own integration stands, but
so netimes there is a crunch in getting computer support, etc.

NADC emphasizes cost and control of support software, and reduces cost in providing
rnuch of the support software and algorithms as GFE. The contractor's use of NADC
i ocilities is itself recorded; he cannot even hide the work on a particular module. NADC
coMucts design reviews and configuration management, and designs its own simulators to
,ee th t contractors correctly implement NADC-supplied algorithms, etc. Naval T&E
0Test and Evaluation) group does V&V on NADC - developed software, and Naval T&E is
involved, as with other users, from the start. NADC feels that acceptance criteria are
-ciatively easy if the work up front has been done. NWC (China Lake) is the agency
responsible for F-18 software. It does not have "SITS (software integration and test site)
bench" on the F-18, as there was on the F-14. NADC claims that if the prime contractor
does all of the system, some acceptance criteria might not apply as they would if NADC
did the system. General audience consensus was that NADC has an ideal setup in its
heavv involvement in development. One stated danger is that the Navy cannot sue the
Navy if it. Specs or code have errors.

Alton Patterson gave an Air Force viewpoint on acceptance on software. The criteria of
acceptance probably could be agreed upon, but the method of evaluating these criteria's
fulfillment, and enforcement, may differ. Al presented an AFLC perspective, from the
standpoint of a maintenance problem (after deployment of the system). Software
suitability (maintainability and usability) includes qualification criteria, specs, and
performance of requirements, but AFLC has "microcosms" of updating. About 100
people support the F-ill OFP (fire control). They use simulation and flight tests to that
end. A "Strawman's approach" looks at error sources, and software acceptance considers
those error sources. The applications of end-item software test give a degree of
confidence in that measure of software correctness. But to handle the 5,000 configured
support software items, no such extensive tests are possible to the degree of end-item
(F-Ill OFP) checks.

231



Software acceptance criteria are not all satisfied at once. Problems exist with incorrect
specs, or with coding not following specs. Function breakouts are in increasing levels of
detail (such as time-dependent operations versus those that are not). The F-1I
correctness efforts are focused on externally-caused errors of computer hardware,
interactive hardware, incorrect human inputs, interface incompatibilities, and incorrect
procedures, versus design and coding errors (syntax, semantics, logic, and algorithmic
errors). Mr. Petterson said the Systems Command must put out a good product, but
AFLC must worry more about suitability, usability, and maintainability.

Acceptance requirements at Sacramento ALC:

1. Short term:

a. Does the System meet spec requirements? (Mode-by-mode functional
basis; overall system basis; system integrations; state (Lab) environment.)

b. Does the system meet user requirements? (Simple to use; providing
effective indications of normal and abnormal (self-test) indications;
backup modes adequate.)

2. Long term: Does the system meet maintainability results - sufficient
documentation, and modularity, common modules, optimum memory use;
development modification/qualification tools available and usable for
maintenance; training available; programming; are any portions proprietary?
What language used (HOL, easy assembly, etc.)?

All F-Ill requirements which are 5 years past deployment stage), result from user
requests, plans for new stores, etc. Software is contingently accepted, depending upon
final system performance.

Maintainability criteria discussed:

Removul/correction of latest errors; adding new features/capabilities; deletion of
unused/undesirable features; software modules to follow hardware changes. This requires
software to be: modular, descriptive, consistent, simple, expandable, testable. Mr.
Peterson agreed that continual tradeoffs between these items are required. F-111 came
after B-5 and C-5 standards were imposed and functions adequately without these
particular documents, and allows tailoring to specific systems. Mr. Patterson also said
that SMALC does have someone in development of modules, and has IV&V for the Air
Force for modules on the F-lll A/E. He said they also can get documentation according
to their needs; and said that the SOW to be laid on GD will reflect SMALC's views of
software acceptance criteria. If the SPO does not act on SMALC's complaints, the SPO
will have to come to terms later with SMALC before turning it over. Al said that
examination of documentation, etc., is in effect also part of the testing, which
establishes acceptance criteria. SMALC direction comes from Air Staff.

232



1'q

I

APPENDIX 6 - VISUAL AIDS OF PANEL PRESENTATION TO WORKSHOP

I
I
1
I
I
!
i



I

PRESENTATION OF PANEL OBJECTIVES

MADE BY

R. DEAN HARTWICK

TO

SOFTWARE WORKSHOP

2 APRIL 1979

S233



C-,
LUJ

LUJ
I- 0

LU
L- >U

< LU

I-LU = LUJ

LUJ LUJ I-- cm

LU < i=

0< 0<=

< 0L <L
00

F-L oLi (A L

ZjLL. CM F -

L.U < -) L LUJ
LU -J j LUV

DC-) (A . 0 0

C-)< Lu <v

LU~ Z i o
(A uLUJ c <0m' 0

C-) (A z z~ 0

0 0

Ln 0

z < I
0) 0 LU 2
-J

235



LUI

LLU LUJ

0 - LUJ

< CA

0 0 1

L) ( LUI V.< z

LLU

LUJ

< ~LU
zLL 0

VII

LU) <
0<~~L V)C-.L

0) uLL- - m
Vj LU = < LL.. _j

LU a-I- -LUJ a

LA- uj M <i
LA LUU <

- LU CZL

LD ~< C-

LUJ

I--

LUJ

L-,
C,

CA

236



X WU

LLU

LiI1LUJ QD Li

I- C)z ~

z) LUC L
< -L z
E z LU L

LaLJ 
LU

LL - , -

Ln CA-I-
C-. =3 LU

mU C- L U LUj LU

0... ;- : U LU LJ ZL

Cii 0 V' ~< < LUJ
LU -- <U

LUJ LU LUJ
Z V-)Li LL LU

0 0j <LU - ) LL-

-C-) Lu L U =0 LUJ

SLUJ C-) m < V) Q

w- CL .. ) =. - ~ -Z
<L Lu~ <~ __

0)V 0 *)
uLU

C-,,

237



0M LL.

LUJ

Lu LU
LLJL0 LL- LL

(I, LLU

LUJ
cc LU.

LU J < UL-

LUJo LUJ
L'c- U (L.) >
<U

I-. -

.00

<< =
LLJ- LUJ LU- L

e - ow)
<, < LUL

< L/ F-
0 < ~ < - L LL.

LA CI

LU-

LU

z 0

a-a
LU

Ci

238



I

PRESENTATION OF PANEL RESULTS

MADE BY

R. DEAN HARTWICK

SOFTWARE WORKSHOP

3 APRIL 1979

I23
I
1 239

I



Iu

L-

CDC

I z
<-

CC

LA-U

1 1241



LOJ -j
-j -j

L)L

X: L'I

L&J CD

LU LU
0w

C)2
L)J 0 0

CDl LUJ2 ~ ~x

- (-j

>- >- U

< LL (L)

L LU

C I - - (A

LL U .

0j LLJ. ~ L

I-i LUJ CD..

CL- CL -j ( j
V) 2L LUi - A

< LJ >- (AP(

L 0 U U A L. J

-j 04 en L LO L
LU (A

LA(A

LU 2

00

24



>-- >

~L)J

LLJJ

uj 0

CD-

V) LAJW -c

c >- u 0
I.- - LL LA J

(A> I- -)LA LL LL UULJ.J 0.J Ac LI
-A LA 3U .-

LL. -j Li.

cr. 0 0 L) 1
L)

(A (A Lii i.J -. L)

LA0.U. ( 0

o i b Li (
2E. .

-CDi I
Li i .. )0 

I . L.

U z Li LiI Li.243



I

PRESENTATION OF PANEL RESULTS

MADE BY

R. DEAN HARTWICK

TO

SOFTWARE WORKSHOP

4 APRIL 1979

245

.



>I-
ULU

L- LJ V)

U* a . U (
CD >- V)

CD LL :: 0.. LU

-0 CL 0

LL. LU = <-L
V) L :

V) LL. - m
I= LUJ C-* (A

V) :z LL C) 0:)
L U) L U ( AL 3

0.. =D L L. 0
uA (A I

L0 LU) 0 L
I. L - C D V)(

VI LUL U L

- U UJ C...
(A CD c : )

a. <

(A 
L

247 L



Li

LLLU

C- = LU J

LL- aL

LW L-1

LU LU

o- 0L L LO i) L'

a_ Li' Li-
L/) vi

LLLU

LULU i) -L =.

I LUJ
><- LUJ

00 LJ LU-

Li) LU LO

0m V.) LUi co V
=L L. 0. C- LU

C) = ~< LU -

IL 0. LUWL

CD L/') <

-A L - V) =- ,* >-
CC LL- j <. 0L LU ca-

= Li') LU -0 l. F-')

Ln C3 0 CL Z < LU 0.. LU
V- LU A U

-j LUU-L 0
V) LU. 4 LU4L

LUD 2I 0 0 LU:~L
I-j LULC-0 UL

I- ~ LU 0 LU ~C

CLL
Vi) 0 ' ~ )~- C.

24



C) LU-
LoLL

V) LLU

U- Z

LUU- 
-< V)

LA-L (.- LA-

zr LU -

*LU

L. LUJ CO LU

L' Li LZ

Lu LU U.- Z .L L- -

LAJU

LU -
L)U
0(

LUzLU ~ L

LUL jL

LU 0..0. 249



L O U

LUL

LLU .JC. C)

'.3 -

-C LLO. V)
-j C) C LU J

LULU L L.~C

0 0- -
-V) o i

I- L 3 L

LU CD ~ 250



(AJ

LUJ

(AJ

LU

L)

V)

LU)
(A V

< ~LU

0 11

LU D

00

- L

cr4

LLLU

CLU

LLJU

(-84



LUA
-AJ

LU
Cj LAi

C) LUi

LUL

U.- U-

CD LD
CD 0 >-- C)

w0 LL- =A a: 0

LU~a - ul~< L

L-. LU Z )

U-
<LL 0 <
I.- 0.. V (A Z

-' - -L -c(Ac
<~ C

(J C)LL u LU)

V) LU (.n = C:-
uVJ -) - -<. U

LU CL L" L.) C
-j~~ ~ 0. M: = V L )C

I- W C) (A (A - (A
C) UU u < (AJ V) L

VU CL LU I
LL -U I- I- I- 0j

0L LU J

0 a- 0 LU 0 U ~ . .J I
C)0 Z L U I- I U (

I- 0.
(A 0 L

0 U < U I I I J L

LU252



S.'.

LLsJ

LjLU

LLLU

LnU

= CD

LUJ

cxA

LLLU

ccA
LLI-

LLLU

LU (

C)C
V(A

253 U



__j LAJ 9L
.hj 1.1.

(A ~LL.J c-

LL-J LIJLJJ
LAJ w <(-

< <

0L <-W( LAJ L.
=) CD

<a. L'i LJ <

-l -L a i

< L). <L.LL

ul= - =0

Q- b-j - L14

VI < -9-A C

. L2 V) C) L

- -i LAJ. = E

(AJ - -4 >--
I w- L) . LAJ

LA- <3 cr (A

9- C:) CD 0~9
= U = 9- 9- LU:

(AJ (A 9-- Zr 9
-D CD = (A - 0

cr LU 0 - 0

>- 0 - 0

=' I L L L
0L Z . L

9-0V)U 0 0 (
CD - L

C)L I L
(Acc(A: L

Lai3 L L ~ L

LU L

254



:z

0 -

-JL
LALU

L)J ( Ej C

V) I. - - ct L (A(A LU a- lz L- U C LU - 0 -(.L. LU x Ln C CDCD 0 V) ( LU LU - LU J
uj LU L)

Z: LUJ CD~ L5 LU
Q: V) W.. LU 0'U

- D CD E C M0
~~C - U-0 c

C) (A .. L

u~ 0 0 0 0 0 0 0 C3 0

255



PRESENTATION OF PANEL RESULTS

MADE BY

R. DEAN HARTWICK

TO

SOFTW ARE WORKSHOP

5 APRIL 1979

3 257

-I



--- -.

LLU

LLU

0~

LW (

CC~ L

0~ V)

LL.U

CDC
<-~

V) ~ i LnUi

C o ui - w
< C*- I- L.

cm LU 4)L
(A A m- ( - ALU

V) LU L. < O- U

(.D w P0 w .. w
0D - 0- (.4

u C LU M C)
-v < LU r U ~ U LU

cy. >-I- -
3c-

U-

LU

925



- 0
C 0c

a_ L

1 Ei

L- - I-

LU. LL

LL i-
V) = D

0 0

26



C)
U.

L)J

CL,

< - L

cm

C
J.- L - J

Q) >
UJ L% .

LA-1-

CDU

-LJ

<t D-JLW
cx z o

Laio

CC
L. >

261



0 C

LLJ~ LUJ

LU 0

LU-

z -

CA D

o LUJ

cej :z

C)

Cl.0 LU

0 LA - L
LU<

LALU
z:

LU -

I-

a_ LU -
LU -

::-cU

CD ~~
vi~L ' .

LU2LU



LjAJ
Xo L

LU -

0

LA Q)

C) u U- U- L.
2~ 0 U. LU I

=D LUJ
V)

LUJ

C0 Lw
= LUIoD LO

LU

LA-
C)

u-)

263



CD

-j -

C)

U- I- C

dLL LL

I.-

- L -d U

V' - A- L/

.Z CD)

Cd) LL 4

LJJ 4 4 ,

C C-

C)C

C ihJ I

LLAJ
CDA..) (

26



LU

>*- C.D

cz
Ln

LU

CD -I:c

LU a.
VI

ci

uj0
ci0

LUa



LLU

I- LI

- L

C:)

Uo LU L

CD LL U

LU LU -

LL LU-

LULO

Oi (AJ LU

<: LU 3

(A 0 j3

~ LU LUD
O UA L

- 0 ~ LU6L



1
I

* t

I
I

* i

A
I APPENDIX 7 - DRAFT OF PROPOSED '7RISERVICE POLICY FOR SOFTWARE

ACCEPTANCE CRITERIA

I
I
1
U
U
I
I
I
I
I



DR AFT LETTER OP, INSTRUCTION
FOR IMPLEMENTING

SOFTWARE ACCEPTANCE CRITERIA
IN

DEFENSE EMBEDDED COMPUTER SYSTEMS

Subj ec t: Applying software acceptance criteria for embedded computer
systems

Enclcsure(l): Interim software acceptance criteria guidebook

1. Purpose

The purpose of this letter is to provide instruction and guidance on the use of
criteria for accepting computer software for defense systems acquisition.

2. Background

a. Currently, no definitive criteria for the acceptance of embedded computer
software are provided through the existing military standards. This frequently
results in a problem for the acquisition program manager in that he has no way
to assure that computer software can be accepted with the knowledge that it
will perform operationally at an acceptable level. Successfully supplying such
criteria not only should satisfy the primary objective of delivering operational
software that works, but also should:

(1) Allow the extent of acceptable developmental progress to be
quantitatively measured.

(2) Improve visibility into the developmental status of software throughout
the developmental cycle.

(3) Provide a better basis for software acquisition managers and software
developers to agree on job completion criteria.

(4) Provide a basis to better express the quality of delivered software.

b. Software acceptance criteria are required to measure embedded computer
software performance and ensure that the software will perform acceptably in
the field. The existing military standards, directives, and regul.tions provide
the necessary authority for a software development manager to apply software
acceptance criteria.

267



c. Software acceptance criteria should be applied throughout the software
acquisition cycle. It is most important that successful software acquisition
efforts ensure that the original software requirements are acceptable in order
to avoid costly schedule slips at later times caused by correcting deficiencies
due to poor statements of requirements. Likewise, a more cost-effective
acquisition effort results from assurance that intermediate software products
are correctly developed.

d. Software, for the purposes of applying software criteria to embedded computer
systems is assumed to be:

(1) All code, including microcode (firmware)

(2) All documentation that specifies this code, describes how to use it
operationally, and is required to test it

(3) Any data resident with the code including constants, parameters, and
initial data sets delivered with it.

3. Requirement

Effective the date of this letter, software acceptance criteria shall be applied to
all embedded computer software that shall hereafter be acquired. The software
acceptance criteria shall be imposed consistent with the software acquisition
management standards being used to acquire the software. References to sections
of specific applicable software acquisition standards are contained in Table 1 of
Panel D's report.

The enclosure is a guidebook that can be used to assist in applying software acceptance
criteria under this requirement.

268



I
I

APPENDIX 8 - OUTLINE AND DRAFT MATERIAL FOR PROPOSED
TRISERVICE INTERIM GUIDELINE ON APPLICATION

OF SOFTWARE ACCEPTANCE CRITERIA

I
I



INTRODUCTION

The purpose of this guide is to provide the manager of embedded computer software
aquisition and maintenance efforts with the means of applying software acceptance

criteria. This guide is written for the manager of such efforts who is assumed to have aIa working knowledge of the acquisition standards and regulations to be used within his area
and to possess a technical background. It is not assumed that the manager has an
in-depth background in software engineering. Rather, the criteria that are presented are
an expression of current software engineering methodology and are delineated here for
two purposes: to provide a common checklist for many developments, and to aid less
experienced managers in understanding and applying them.

These criteria are defined for use in any effort that is being conducted tinder existing
acquisition standards and regulations. It will accommodate all such standards and
regulations currently being used to procure embedded computer systems. (It is likely
that it could be used for general ADP situations, but these systems were not considered
in developing this guide.) These criteria can be applied to contractual software
developments, governmental agency developments, and either contractual or
governmental software maintenance.

At the present time, this guide has addressed only eight generic software products.
These are:

1. System level specifications
2. Development (or performance requirements) specification
3. Product (or product design) specification
4. Computer program contract item (CPCI) (code)
5. CPCI test plan
6. CPCI test procedures
7. CPCI test report
8. Handbooks and manuals.

Al though additional material does pertain to the acquisition process (for example, quality
assurance and configuration management plans), these pertain to the way the software
effort is managed as opposed to being descriptive of the software product itself.

The following sections contain the software criteria and propos~ed implementation
instructions. The sections of existing standards that can be used to apply acceptance
criteria are referenced in "Enabling Standards." Acceptance criteria that can be applied
to the eight defined software products are contained in "Software Acceptance Criteria."
In this section also is a guide to the time and emphasis when the criteria are applied. In
"Action Procedures," alternate action procedures to be followed upon failure of criteria
are presented. A glossary of terms is presented in Appendix 9.

269



ENABLING STANDARDS

This guide is intended to be applicable for all acquisition standards currently being used
by the three services. In order to use this guide for all such standards, it is necessary to
define an ideal software acquisition cycle that can be used as a standard of comparison
to the other standards. Accordingly, an ideal four-phase embedded computer acquisition
cycle is defined. This ideal cycle consists of defining software into one of four
developm ent phases:

1. Systems requirements development
2. Preparation of specifications and design
3. Development of the program
4. Evaluati on.

With each of these phases, four classes of activity are defined that suggest an event that
is to be approved or disapproved. This ideal cycle is shown schematically in Table 8-1.
Within each of the activities, the software products typical of that set of activities for
each phase of development are defined. The four sets of activities include the five
identified prime software products (under documentation) and the three identified test
items (under test and evaluation). The other two activities (reviews and audits and
configuration management) relate management and control items to the software
products. In addition, other software products are defined that are not currently
addressed by this guide (for instance, interface design specification).

Each of the activity items within the ideal cycle is cross-referenced in Table 8-2 to the
sections of applicable standards where the acceptance criteria are enabled for that
particular item. For example, the item for reviews and audits during the evaluation
phase is designated a formal qualification review under the idealized cycle definition.
The enabling instructions for this review or its equivalent are contained in
MIL-STD-1521, paragraph 5.11.1.2 of MIL-STD-1679, and so on. The program in its
deliverable form is defined under documentation during the development phase.
Appropriate cross-references then are made to Sections 60.5.5 and 60.5.4.2 of
MIL-STD-483 and to Section 5.0 of MIL-STD-52779. This table can be used to gain the
authority to impose the appropriate acceptance criterion.

SOFTWARE ACCEPTANCE CRITERIA

Software acceptance criteria are defined in this section for the eight software products.
Each of these products has a set of acceptance criteria defined for it (Tables 8-3 through
8-10). These criteria are to be applied across the seven reviews and audits defined in
Table 8-1. The need to approve their satisfaction varies depending upon the product, as
shown by the "approval level" given for each of the software products as a function of
emphasis that should be placed on each criterion at each review/audit. The approval
level ranges in importance from 110" (least prominent at that milestone) to "13" (most
prominent at that milestone). The scale is applied according to:

270



Uc
I

a,

Caa

0

-L Z

0 a,-0 c
tu2 C ,a, a

oL CC -O

*00 ac
Ma~aCa a ,

c 2>-W, ~~ -a-U

0 0 0
a, ~LL o 0f U u 's -n

0 w
00

aj 0 4 0lc

CV

c c T I
CO C ~ 2 0 C 0~ - L, - a,

aa a u~4~ c z E 'aC
0 0

a, ,
CO L

- 0 0 LC

.z Z; m
0 -r -) 0.-9 u us w

- a a .C

>- -. C a, E Z ~
C~~~ ~ 0 V 0 V t
CC~~C C C0.2

a L E mi zO~ aa,

a ,Ea a ,CC a, 0 a, a, a
C co, . a a .0' aE ,a

0 0 8,. 0m 0 a,''

EL E am

2m 2 2 0 ,
a a a.E CLO L) u 9a(

.o I~a ,a-.

~~~ C a Wa

EL E c,~f~ 2 a 0

.2 E~ <, - L a, 0 a, L a

aL a, a, a, m ~a

r -
271w-

>I - j>u

Table 8-2. Correlation of Standards and Ideal Cycle (1 of 4)

A. System Requirements Phase Sections

RevisedRev./Audits 1521 490 483 1679 52779 480

Sys Rqts (SCR) App. A
Sys Design (SDR) App. B
Prel Design (PDR) App. C

Documentation

Sys Spec AppA,B App 1, 10 App. 111, 30
S/W Rev Plan
S/W QA Plan 5.9 3.1
Prog Mgt Plan
Integ Log Plan
Support S/W Plan

Configuration Management

CM/CSA Plan

Test and Evaluation

Test and Evaluation
Plan 10.4

272

l
Table 8.2. Correlation of Standards and Ideal Cycle (2 of 4)

B. Specification and Design Phase Sections

Revised
Rev./Audits 1521 490 483 1679 52779 480
Sys Design (SDR) 20. 3.2.6

Prel Design (PDR) 30. 3.2.6

Documentation

Prog Spec 20. 60. 60.4 5.1 3.2.2,3.2.4,
3.2.8

Prog Design Spec 40. 130. 60.5 5.2 3.2.2,3.2.4
Interface Design Spec 10. 20. 5.12.4b,

5.12.5c,
5.2.3

Data Base Doument 30. 5.2.2.6

Configuration Management

CM/CSA 140. 5.11 3.2.7
Software Errors 5.10.3 3.2.9
Software Patches 5.10.3.2

Test and Evaluation

Subprogram Tests 30.4 5.10.2 3.2.8
Function Tests 60.4 3.2.8

273

1

Table 8-2. Correlation of Standards and Ideal Cycle (3 of 4)

C. Development Phase Sections

Revised
Rev./Audits 1521 490 483 1679 52779 480

Critical Design (CDR) 3.4 4.4 3.2.6
40 5.12.3

Function Configuration 3.5 4.4 3.2.6

Audit (FC A) 50 5.12.3

Physical Configuration 3.6 4.4 3.2.6

Audit (PCA) 60 5.12.3

Documentation 60.1

Program Design Doe 40.1.3.1(a) 130 60.1,60.2 3.6.2,5.2 3.2
(CS=Part II, etc) 40.1.3.2(a) 60.2.1(b) 5.12.3

60.5

Program Packages 40.1.3.2 4.5 60.5.5 5.5.6 5.0

(program on deliverable 60.5.4.2 5.5.7,
media, in source and 5.6, 5.7
object, plus listings, 5.12.3.1(d)
X-refs, etc.)

Configuration Management

CM/CSA 3.1.1 Entire 4.5,5.11 3.2.7
document

Software Errors 3.9.1,
5.8.5,
5.10, esp
5.10.3.1
3.15,5.10,

Software Patches 3.2

Test and Evaluation

Performance Tests 3.5 60.4 60.4.4
50 60.5.4 5.8.3, 3.2.8

5.10

274

I
i Table 8-2. Correlation of Standards and Ideal Cycle (4 of 4)

D. Evaluation Phase Sections
After Product Baseline - Betore Operati onal Baseline

Revised
Rev./Audits 1521 490 483 1679 52779 480

Formal Qualification
Review (FQR) App. G 4.3.2 App. VI 5.11.1.2 3.2.8

4.4
App. VI

Documentation

App. XIII

Operator's Manuals App. G App. VI App. VI 4.4
User's manuals 60.5.4.1 60.4.4 5.8 3.2.4
Test Reports App. XIII 60.5.4.1 5.9 3.2.8

j Configuration Management

CM/CSA
Software Errors
Software Patches 9.1

Test & Evaluation

Integration Test
System Integration Test 4.4.1.2 4.4.1.2

4.4.2 4.4.2
Acceptance Test 4.6.4 4.6.4
Tech. Eval. Op. Eval. App. VI App. VI

I
I

i 275

a. 3 = primary approval point
b. 2 = basis faor activity but not primary approval
c. 1 = check for status change
d. 0 = status check only.

An example of how this table is to be used can be gained by looking at two different
products. The system level specification (Table 8-3) is the first software product to be
developed, and the primary approval/dis approval events occur at system requirements
review (SRR) and again at systems design review (SDR). Thereafter, it is important to
establish that the requirements have been properly implemented in the design (values of
two at preliminary and critical design reviews) and fully implemented (value of two at
formal qualification review). During the functional configuration and product
configuration audits, a value of one is assigned to indicate that status changes are looked
f or.

By contrast, the computer program package (CPCI) will not have been developed to the
state that acceptance criteria can be applied until the two audits. The FCA and PCA
then become the two events at which primary approval of the code is obtained.

276

I
Table 8-3. System Level Specification Set (FCI) Acceptance Criteria

SRR SDR PDR CDR FCA PCA FQR

1. Are s/w functions adequately 3 3 2 2 1 1 2
defined for the system?

2. Is a test requirement adequately 3 3 2 2 1 1 2
defined for the system?

3. Are s/w functional requirements 3 3 2 2 1 1 2
consistent with user requirements?

4. Is the FCI in agreement with 3 3 2 2 1 1 2
applicable documentation standards?

5. Are s/w functional requirements 3 3 2 2 1 1 2
consistent with interfaces?

2
I
I
I
I
I

I

~277

Table 8-4. Software Acceptance Criteria for Development

Spec and Program Requirements Spec (1 of 2)

SRR SDR PDR CDR FCA PCA FQR

1. Software requirements are mapped 0 3 2 2 2 1 1
from system level specs into soft-
ware requirements specs.

2. Mapping consistent, complete, 0 3 2 2 2 1 1
accurate. Vertical and horizontal
consistency and compatability
achieved.

3. Each functional requirement 0 3 2 2 2 1 1
is defined explicitly, quantita-
tively and testably in terms of
inputs, processing, outputs, data
requirements, interfaces, accuracy,
timing, exception handling, con-
straints, and pertinent performance.

4. Maintainability, usability, and
reliability requirements are
sufficiently well defined.

a. modularity 0 3 2 2 2 1 1
b. structuredness 0 3 2 2 2 1 1
C. descriptiveness 0 3 2 2 2 1 1
d. consistency 0 3 2 2 2 1 1
e. simplicity 0 3 2 2 2 i 1
f. expandability 0 3 2 2 2 1 1g. testability 0 3 2 2 2 1 1
h. device independence 0 3 2 2 2 1 1
i. self-containedness 0 3 2 2 2 1 1
j. robustness/integrity 0 3 2 2 2 1 1

(resistance to noise)
k. accessi bili ty 0 3 2 2 1 1 1

5. Are the data base and date 0 3 2 2 2 1 1
requirements clearly stated?

6. One-to-one mapping of require- 0 3 2 2 2 1 1
ments (Section 3 of spec) into
, ,LiWfiient method of evaluation
(Sec ,on 4 of spec).

7. Are the requirements for software 0 3 2 2 2 1 1
structure, etc., clearly stated?

278

AD-A103 485 AIR FORCE LOGISTICS C0O4MAND WRIGH4T-PATTERSONA AFB ON4 F/9 5/I

AUG 79PROCEEDINGS OF THE JO0INT LOGISTICS COMMANDERS JOINT POLICY COOR--ETC(U)

UNCLASSIFIFiON; uuuuuuuuuIuu

SEND

In,,cIo mi~

Table 8-4. Software Acceptance Criteria for Development
Spec and Program Requirements Spec (2 of 2)

SRR SDR PDR CDR FCA PCA FQR

8. Conformance with system, accuracy 0 3 2 2 2 1 1
control, and interface control
specifications (i.e., other
equipments, operators, other
software and data/data bases).

9. Are the equations scientifically 0 3 2 2 2 1 1
correct and consistent with the
requirements?

10. Reasonably achievable (feasible) 0 3 2 2 2 1 1
within allocated resources and
schedules.

11. Are requirements for system 0 3 2 2 2 1 1
resource margins adequately
specified?

12. Acceptable risk. 0 3 2 2 2 1 1

13. The specification clearly 0 3 2 2 2 1 1
distinguishes between each
requirement and information
that does not constitute a
requirement. (All "shall"
statements should be require-
ments.)

14. Error processing logic must 0 3 2 2 2 1 1
describe CPCI performance when
improper, incorrect, or out-of-
range inputs are received.

15. All system limits and capacities 0 3 2 2 2 1 1
are compatible with the System
Specification.

16. Conformance to documentation 0 3 2 2 2 1 1
standards.

2
I 279

I

Table 8-5. Software Acceptance Criteria for Design
Documentation (Product Specs) (1 of 2)

SRR SDR PDR CDR FCA PCA FQR

1. Software module structure, 0 0 3 3 1 2 1
interface, and layout conform
to requirements specs.

2. Memory estimates, computations 0 0 3 3 1 2 1
speeds, [/0 budgeting and
resource utilization are
reasonable and consistent/
compatible with interface and
accuracy control specs, hardware/
system specs, and resource
all ocat ions.

3. Accurate, consistent, complete 0 0 3 3 1 2 1
translation of requirements
specs (development spec).

4. Software explicitly described
in terms of:

a. Algorithms/equations 0 0 3 3 1 2 1
b. Narrative form, logic, a a 0 3 1 2 1

timing diagrams, memory!
timing/I/O budgets.

5. Satisfies maintainability, 0 0 3 3 1 2 1
usability, and reliability
requirements.

6. Algorithms satisfy accuracy, 0 0 0 3 1 2 1
interface, timing, and
response requirements.

7. All software requirements have 0 0 3 3 1 2 1
been addressed in the design
and there is traceability.

8. The data base is fully defined 0 0 3 3 1 2 1
and its architecture (structure
and access methods) are fully
compatible with the logical
design.

9. The specific module capabilities 0 0 3 3 1 2 1
are defined.

280

I
Table 8-5. Software Acceptance Criteria for Design

Documentation (Product Specs) (2 of 2)

j SRR SDR PDR CDR FCA PCA FQR

10. Control structures and data 0 0 3 3 1 2 1
linkages are consistently
de fi ned.

11. Sufficient timing and sizing 0 0 3 3 1 2 1
margins exist.

12. The design is detailed enough 0 0 0 3 1 2 1
to begin coding.

13. The design is achievable within 0 0 3 3 1 2 1
allocated resources, schedules,
and acceptable risks.

14. Conformance to documentation 0 0 3 3 1 2 1
standards.

281

Table 8-6. Software Acceptance Criteria (SAC) for the CPCI
(CODE) (1 of 2)

SRR SDR PDR CDR FCA PCA FQR

1. Software is coded in accordance 0 0 0 0 3 3 1
with the design (product) spec.

2. Documentation in the code is 0 0 0 0 3 3 1
complete, descriptive, consis-
tent, and conforms to pro-
gramming and military standards.

3. The code produces correct output 0 0 0 0 3 3 1
for prescribed inputs:

a. Arithmetic results are
correct for nominal conditions.

b. Minimum and maximum inputs are
processed correctly.

C. Singularities and other
conditional occurrences of
data are processed correctly.

4. Subroutine calls are properly 0 0 0 0 3 3 1
f orm ula ted.

5. Parameters are dimensionally 0 0 0 0 3 3 1
correct, and invoked in proper
calling sequences.

6. ScaIi ng is proper to reali ze 0 0 0 0 3 3 1
correct precision and desired
results.

7. All error conditions have been 0 0 0 0 3 3 1
properly processed.

8. Timing and resource allocations 0 0 0 0 3 3 1
have been properly mechanized.

9. Task sequencing is proper to 0 0 0 0 3 3 1
mechanize the function in
correct execution order.

10. Software shows modularity and 0 0 0 0 3 3 1
simplicity.

11. The purpose of the code, and the 0 0 0 0 3 3 1
source coding used, are fully
described.

282

Table 8-6. Software Acceptance Criteria (SAC) for the CPCI
(CODE) (2 of 2)

SRR SDR PDR CDR FCA PCA FQR

12. Source code and its descriptions 0 0 0 0 3 3 1
are self- (and mutually) con-
sistent and uniform.

13. Interfaces between routines, and 0 0 0 0 3 3
to external devices, are well
designed and described.

14. Source code is concise and pro- 0 0 0 0 3 3
duces efficient, relocatable
machine code.

15. Source code is maintainable, 0 0 0 0 3 3
usable and reliable, in terms
of:

a. Structure
b. Consistency
C. Expandability/modifiabili ty
d. Testability
e. Device independence
f. Self-containment
g. Robustness/integrity (resis-

tance to noise)
h. Accessibility.

16. Data base structure implemented 0 0 0 0 3 3
in code is self-consistent and
hierarchical.

2
I
I
I
I

I 283

r r

Table 8-7. SAC for Test Plan Documents

SRR SDR PDR CDR FCA PCA FQR

1. Requirements traceable between 0 3 3 2 2 1 1
requirements specs and test
plans.

2. Resources and facilities are 0 3 3 2 2 1 1
adequate and consistent.

3. Test schedules are feasible 0 3 3 2 2 1 1
and consistent.

4. Organizational responsibility 0 3 3 2 2 1 1
is clear.

5. Test objectives are clear. 0 3 3 2 2 1 1

6. Acceptance criteria are 0 3 3 2 2 1 1
completely traceable.

7. Test method type is traceable 0 3 3 2 2 1 1
back to Sectinn 4 of require-
ments document.

8. Test cases are efficient and 0 3 3 2 2 1 1
complete.

9. Test dependencies are adequately 0 3 3 2 2 1 1
defined (tests which are the
basis of later tests should
be done first, etc.)

284

Table 8-8. Software Acceptance Criteria for Test Procedures

SRR SDR PDR CDR FCA PCA FQR

1. Pass/fail acceptance criteria 0 0 0 3 3 1 1
are based upon expected values
properly derived from test
requirements.

2. The scope, objectives, and unit 0 0 0 3 3 1 1
under test are clearly stated.

3. Explicit, accurate implementation 0 0 0 3 3 1 1
of the test plan is provided.

4. The test script is clear, 0 0 0 3 3 1 1
traceable to test plans and
requirements, consistent with
software requirements and design,
and exhibits adequate coverage.

5. Test data requirements and data 0 0 0 3 3 1 1
reduction techniques are complete
and traceable to acceptance
criteria.

6. Acceptance criteria are complete 0 0 0 3 3 1 1
and traceable to test plans.

7. Documentation standards are 0 0 0 3 3 1 1
followed correctly.

1 285

Table 8-9. Software Test Reports' Software Acceptance Criteria

SRR SDR PDR CDR FCA PCA FQR

1. Software is tested in accordance 0 0 0 0 3 1 1
with approved test procedures.

2. Test results meet the minimum 0 0 0 0 3 1 1
requireiments stated in develop-
ment specifications and validate
performance.

a. A sufficient number of test 0 0 0 0 3 1 1
cases are run.

b. Boundary conditions are 0 0 0 0 3 1 1
recoverable.

C. Adequate analysis has been 0 0 0 0 3 1 1
performed and proper inter-
pretation and evaluation
has been made.

d. Test results conform with 0 0 0 0 3 1 1
requirements (development)
specifications.

3. All errors have been identified 0 0 0 0 3 1 1
and evaluated and corrective
action was identified.

4. Deficiencies were identified and 0 0 0 0 3 1 1
evaluated and corrective action
was identified.

5. Waivers and/or deviations were 0 0 0 0 3 1 1
identified and documented, and
sufficient rationale is avail-
able for evaluation.

6. Documentation standards are 0 0 0 0 3 1 1
conformed to.

286

Table 8-10. Software Acceptance Criteria for Operators' and
Users' Manuals

SRR SDR PDR CDR FCA PCA FQR

1. Complete description of user! 0 0 0 0 0 3 1
operator options, controls, and
functions.

2. Safety limitations are defined. 0 0 0 0 0 3 1

3. Manuals are consistent with 0 0 0 0 0 3 1
software design.

4. Manuals are adequate to support 0 0 0 0 0 3 1
training.

5. Operator Interaction sequences 0 0 0 0 0 3 1
of events are completely and
clearly defined.

6. Recovery techniques are 0 0 0 0 0 3 1
adequately defined.

7. Operational limits are described. 0 0 0 0 0 3 1

287

ACTION PROCEDURES

Upon detection of a failure of the software to satisfy acceptance criteria, the
software manager must determine the appropriate action to be taken. The actions
available range from an unqualified refusal to permit the developer to proceed to the
next development step, to electing to ignore or waive the failure. The
technical/management decision that is made can have a far-reaching impact upon
contractual relations and total system acquisition. Herafter a guide is presented that
gives the software managers a recommended action based upon three criteria. These are:

1. What is the impact to the system acquisition of the criterion failure (or error
severity level)?

2. What is the cost to correct the criterion failure?

3. What is the impact to the system acquisition schedule or cost, if the failure is
not corrected?

1. Determination of Error Severity Level

The software manager should analyze the acceptance to determine its potential
impact on the proper functioning of the embedded computer system functioning.
Once this analysis is complete, the criterion failure shall be documented into one of
four categories of severity. These four categories are defined as follows:

a. Severity 1: "Prevents accomplishment of its primary function, jeopardizes
safety, or inhibits maintainability of the software:

b. Severity 2: "IDegrades performance or maintainability, with no workaround"

c. Severity 3: "Degrades performance or maintainability, but a workaround
exis ts"

d. Severity 4: Does not adversely affect performance or maintainability"
(such as documentation and similar errors transparent to users).

2. Estimation of Cost to Correct

After the severity of the failure has been categorized, the cost of correcting the
failure should be estimated. Parameters that are important in estimating the cost are:

a. Manhours of labor
b. Equipment costs
c. Test costs
d. Documentation
e. Review.

288

The software manager should then define at least three cost categories for the
particular acquisition. one way of defining these relative cost categories is the cost of
making the correction as a percentage of the total software development cost. One such
categorization could be:

Category Cost (percentage of software development cost)

Low Less than 0.5 percent

Medium 0.5 to 2 percent

Hi-gh Greater than 2 percent

A portion of the failure analysis to be conducted by the software manager is to
estimate and document thc cost of correcting the error and ascertain the appropriate
cost category.

3. Determination of Acquisition Impact

The third parameter to be determined by the software manager is the impact that
holding development of the software until the failure is corrected will have on the
system being acquired. Three categories of system impact are defined as follows:

a. A failure requiring an "emergency" fix is an error which, if not fixed, imposes
rapid increases in cost, could cause safety considerations, or causes ever
greater schedule slippages.

b. A failure requiring an "urgent" fix is one which could cause moderate increases
in cost or moderate but perpetually increasing schedule impacts (delays) the
longer it remains uncorrected.

c. A failure is classified as "routine" if it causes no particular cost or schedule
slippage no matter how long it remains uncorrected.

The manager's third step is to classify the impact upon the system and categorize
it. This deterimination should be documented and concurrence of the impact given by
the system acquisition program manager.

4. Determination of Action

Once the three action parameters are determined according to the above steps, the
software program manager should determine what action should be taken about the
criterion failure. The permissable steps are:

a. "Rework it right now" (fix it immediately, even if this requires that other
development or progress be halted for the moment)

b. "Correct the error while continuing the development activity"

c. "Proceed with no action" ("live" with the error, with a note to correct later if

feasible)

289

The manager can determine which action is appropriate by executing the following
two steps. First, he determines an intermediate factor that correlates the failure
severity level and the cost of correcting the failure. This is done by a tabular lookup
from the following table:

Table 8-11. Failure Severity/Cost Matrix

Cost of
Correcting Failure Severity Levels

Error 1 2 3 4

High " Y a 01

Medium V 0 3 oe

Low 6 6 6 V

Second, the intermediate factor is correlated with the impact to the system of not
correcting the error. This is done by performing a tabular lookup from the following
table:

Table 8-12. Acquisition Impact/Intermediate Factor Matrix

System Acquisition Intermediate Factor
Impact _ y 5

Emergency
(High schedule/cost) L L R R

Urgent
(Medium schedule/cost) L C C R

Low
(Low schedule/cost) L C C C

By performing these two table look-ups, a recommended action is derived a

foil ows:

a. R = Rework failure immediately even if it requires holding other progress

b. C = Correct error but do not hold program

c. L Proceed, no action (accept the failure now with future action to correct it)

290

An example of how this works can be determined by considering a failure of
severity level 3, of high cost, with a medium system impact. Looking into Table 8-11, an
intermediate factor of a is derived. Usingoeand medium system (urgent) impact, a
lookup in Table 8-12 gives a recommended action of L or "Proceed with no action". The
software manager should riot document this recommended action as the final result of his
analysis. His final -step is to review this recommendation and determine if other
circumstances exist that might alter his recommendation. If not, he may proceed into
the next development phase. If circumstances do exist to alter his conclusion, he should
document this conclusion and proceed accordingly.

29

I

APPENDIX 9 - ADDENDUM

I
I
I
I
I
I
I
I

An Addendum Report for the Software Acceptance Criteria Panel

The attachments are included as a "minority report" only in the sense that they
were finished just prior to the June 20, 1979 review meeting, and have not been reviewed
by other panel members for concurrence or suggested changes. The statements thus
might or might not reflect the views of other panel members on any particular point.

Attachment I is a proposed method of "quantizing" whatever software acceptance
criteria are ultimately decided upon. It is based upon an already existing method
developed by Air Force Test and Evaluation Center (AFTEC) at Kirtland AFB, New
Mexico, and elaborated by BDM Corporation under contract to AFTEC. Some
suggestions for changes or uses of this method are included in Attachment I.

Attachment II is a possible detailed set of software acceptance criteria called fromn
various sources, with special attention to the viewpoints of panel members and 'the
Software Acceptance Criteria Panel Report. Again, however, it has not yet been
reviewed by other panel members for their concurrence or suggested changes. It begins
with a comparison of three different published software quality "trees", and tries to
combine or adapt these into a fourth "consensus" software quality tree. On this basis,
detailed software acceptance criteria are proposed for the factors that are assumed to
comprise "maintainability" criteria. The other aspect of "usability" was not addressed in
Attachment H. The acceptance criteria are somewhat "loaded" towards the end of actual
CPCI implementation, and the acceptance criteria for documentation are phrased in
terms of their support of testability; this was a somewhat arbitrary distinction.
Nonetheless, Attachment II is an effort toward detailed acceptance criteria for at least
maintainability aspects of software.

Attachment III contains a rather random collection of possible clarifications or
changes that might be made in Mil Std 1679 a basis for software acceptance criteria andI to a minor extent in Mil Std 483/490, which was not deemed nearly as useful.
Ultimately, the intent was to have all acceptance criteria traceable to Mil Std 1679
(modified), so that the consensus acceptance criteria would help drive Mil Std 1679,
which would help drive in turn the acceptance criteria, and so on in a recursive fashion.
This method would provide the best possible correlation between the acceptance criteria
and the Mil Stds and other documentation upon which such criteria must be based.

One statement in which all panel members undoubtedly concur is our joint
appreciation for the opportunity to participate and to provide input into the software

acceptance process which the JLC has thoughtfully provided for us.

P. Reimann

293

Attachment 1:

Proposed Quantized Software Acceptance Criteria (SAC) for Embedded Quantized
Computer Systems

Some Desirable Attributes of Software Acceptance Criteria

Acceptance of software either does take place (albeit sometimes after some
required changes or improvements), or does not. In either case, understandable
statements should exist in written form detailing why the software in its present form is
not (yet) acceptable, and what should be done to correct the stated deficiency, or else
written statements should affirm its acceptability. "Software" is here taken to include
both an embedded computer program that is part of a weapons system or subsystem, and
the documentation and other products external to the embedded computer program's
source and object language, which helps define and explain it, to fulfill any contractual
obligations. However, it is convenient to separate the computer program package itself
from the descriptive documentation which publishes requirements contractually specified
for the software, and how the software fulfills those requirements.

Historically, reviews and audits, measured against military standards or other
contractually specified standards, have determined the acceptability of the software
documentation and explanations of program operation embedded within the program
source, while Cat.I/Cat.H (subsystem and system tests, etc.) have determined whether
the software performs acceptably.

These are all valid methods of determining the acceptability of software and its
documentation. The military standards have formerly shied away from establishing any
one computer arch itec ture, programming language, programming standards or
conventions, etc., so the criteria for acceptance in the military standards tended to be
rather general. This allowed the same military standard to be used for acquiring any
software system in any language for any computer architecture for any purpose or type
of weapons system. But by the same token, documentation and computer programs for
any weapons system could rather easily meet those standards, because the stated
requirements were so general and nonspecific, that almost any format and content could
appear to "qualify".

More recently, interest has increased in having a certain preferred set of computer
programming languages, such as JOVIAL, FORTRAN (or perhaps only one language, such
as JOVIAL, in one or several versions). This has paralleled other groups, such as
Automatic Test Equipment (ATE) software people, who have pushed a standard ATE
language, such as ATLAS, in one or more versions. Programming conventions recently
have focussed on using top-down, structured programming techniques as much as possible
in the languages that facilitate the use of such techniques. This provides some of the
impetus toward favoring certain programming languages over others). There has been
much less effort to settle on any one computer architecture, perhaps from fear of
missing out on great advantages from new computer architectures.

294

Mil Std 1679 (Navy, Dec 1973) departs sign ificantly from the generalities which
characterized previous military standards' acceptance criteria for weapons system
software. Much more specific acceptance criteria are established in 1679, particularly in
testing requirements. These requirements are so stringent that probably few weapons
systems driven by embedded software could pass them, unless the software had been
originally designed according to the rest of 1679's stated requirements. It is shown by
1679 that more specific criteria, requiring higher quality, can be specified without
stating any particular computer architecture or even programming language (except for
restricting the possibilities to those approved for DOD use).

Overall, 1679's stated requirements are an improvement over the more general
(vague) statements (or on some subjects, lack of statements) found in Mil Stds 490 andj 483, for example.

What would be a consensus of desirable attributes of software acceptance criteria?
Most would agree with the following partial list:

1. Hiugh standards for SAC tend to result in higher quality software (including
documentation) during development, even before all reviews, audits, and tests
determine their acceptability.

2. The initial cost of this higher quality software may be higher, but to a certain
degree (of cost-effectiveness and time--schedule constraints), these extraI initial costs can be recouped or more than recouped in lower software
maintenance costs during the system's life cycle, especially for long life cycle
i te ms.

3. A universal set of SAC is needed, but unique weapons systems may have unique
requirements or attributes, which may not exactly fit those "universal" criteria
or might require some modification or supplement to such criteria, or

reinterpretation of the universal SAC.

The question then becomes: can we find some specific, meaningful, universal set ofISAC which applies standardized, precise measurements of software quality even between
quite different embedded computer systems? Furthermore, is such a set not so
unreasonably inflexible as to unduly "penalize" one weapons system in terms of meeting
SAC just because its requirements are so unusual that they do not fit the usual mold?

Suppose that we agreed that no single set of "universal" SAC can ever be totally
complete or absolutely perfect, but that some less than perfect set of criteria might still
give a reasonable estimate of software acceptability in measurable factors. What would
be the limitations of any such set of software acceptance criteria?

1. Probably all would concede that in 10 years, or 5, or 3, or less, the growing
body of software experience and new developments and new policies might
well require changes in the SAC. But what if we could avoid frequent changesI in the SAC by merely changing the percentage of fulfillment required for

1 295

certain factors measuring quality in the SAC yardstick? In other words, if the
SAC could state what a 100 percent perfect hypothetical weapons system
software system would do in terms of performance testability, maintainability,
etc., and subfactors of these, we might simply raise our expected
"acceptability" threshhold from, say, 63 percent of "ideal, perfect" software
for an older contracted software system, to, say, 74 percent of "perfect" for a
newer system to be contracted. Put another way, if the SAC yardstick
remained relatively constant, but the number of inches up the yardstick which
was contractually required (before the contract was ever let) could be raised in
appropriate areas due to newly available "breakthroughs", or lowered for
low-cost, minor systems, then the needed flexibility of SAC would exist, and
we could fairly compare one system against even an "unrelated" system for
relative software quality.

2. Any acceptance of a system's software depends in part upon the evaluator(s)'
knowledge, biases, experience, and attitudes at home. And no set of SAC,
whether "universal" or not, can provide perfect evaluators. So SAC in practice
are no better than the people who apply the SAC. But what if the SAC
inherently provided the way to judge the bias and knowledge and consistency of
each evaluator himself, to place, for that particular SAC evaluation, a
"confidence level" in his judgment? Then a quantitative measure of quality
could begin to be believable, by measuring the extent of the "apples vs
oranges" problem in each evaluator. Wouldn't this allay many complaints about
fair judgments?

Perhaps, then, it is possible to partially compensate for the usual SAC problems of
constantly changing criteria and fair applications by evaluators of the SAC (who will
watch the watchers?). But any particular SAC would have to demonstrate that it could
go far to overcome such usual liabilities. On the other hand, what are the desirable
attributes of SAC?

One desirable attribute of SAC would be a set of criteria which are fully specified
bef ore the contract is bid on. In that way, potential contractors could better estimate
how much it would cost to achieve the required level of quality, if the SAC were
adequate to supply sufficient detail. But in the past, where very specific acceptance
criteria have been stated before bids, it has often appeared, rightly or wrongly, that
these were aimed to favor one particular contractor, and exclude others in competitive
bidding. However, if a particular SAC set could be settled on and agreed upon as
impartial once, it could then be used many times for many different systems, before bids,
by merely changing the "percent of ideal" quality required on that yardstick. It might
also alleviate many suspicions that a particular weapons system run by embedded
computers was specified to favor one contractor, if the SAC specified before the L is
was acknowledged to be impartial and universal. If test results are suspect in those cases
where acceptance criteria were not established before the tests began (or were changed
during the tests), by the same reasoning, then, SAC also should be precisely stated before
letting contracts. Then, there is less pressure downstream to grant acceptance just to

296

stay on schedule, or because the software seems to roughly correspond to vague or
general standards.

Another desirable attribute of SAC would be its ability to give more priority to
some acceptance criteria than to others. For a given criterion, a very good or very poor
compliance with the criterion should show up in the measurement as reflecting the
degree of quality (not merely a "yes or no") on that point. In other words, we should have
not just an idea of pass-or-fail on each point, but how well it passed or how poorly it
fared, so that patterns can be seen. This requires something on the order of multiple
choice, or scaled, responses. But the usual SAC used in reviews and audits, for example,
is only a checklist of items, with no criteria of any stated priority any higher or lower
than any other, nor anything more than a "pass" or "fail" response. Certainly, any
criterion must be measured ultimately in the "pass" or "fail" category, but the degree of
that rating and its relative priority, are too important to be lost by equally weighted
yes-no responses. One favorable attribute of weighted criteria is the ease of simply
changing the relative weights of the priorities of each criterion as different policies or
technical developments emerge, without necessarily having to change the statement of
the criteria so frequently. Thus, different expectations can readily change from one
system to another, but this is done by adjusting priorities and expected degrees of
perfection by shifting the points on the yardstick, not changing the yardstick itself. The
standards or criteria should be as durable as possible, as an always-changing yardstick
makes for several problems in continuity of measurement.

Anything can be overdone, whether measurement, quality, or whatever, in terms of
the benefits derived versus the cost. Suppose, to take a hypothetical example, System A,
with embedded computers, was developed to seek out and mark with Red Dye Number 2,
livestock in enemy territory. But System B involved arming, aiming, and releasing
nuclear weapons from a new aircraft. Clearly, the quality of System B's software must
be as close to 100 percent as it is possible to achieve, though its initial cost will be
higher. But System B might only have to have a quality level of 55 percent of ideal, as
reliability in marking "enemy" cattle matters less, and occasionally marking a herdsman
by mistake is relatively harmless. But if each system is in many respects a relatively
"new"~ or unique system, how can we tell beforehand how much quality (what percentage
of 100 percent "perfect" software) we can reasonably pay for? If the SAC changes with
each system, we have to guess with each system. But if the same SAC is used between
many systems, we can, if this SAC is quantifiable, produce from that experience a
"family of curves" of estimated cost (in constant year dollars, for which another curve
can provide now-year cost adjustments) versus percentages of "quality" attained on
various points of the relatively fixed yardstick. That would increase the certainty of
estimates about how much a given quality level would cost for a given required system.
It would also facilitate comparisons of the past performances of different vendors for
given costs, which might be a consideration in awarding future contracts, and would
provide incentives to contractors to deliver "the best for the buck." A quality level for aj given predicted cost is language that anyone can understand, though it is; not so easily

297

IM

arrived at. But programs have to be sold to Congress after being sold to the President,
and cost versus quality is an important consideration in choosing systems.

As the converse of the limitations of bias and experience, it is desirable for an SAC
set to include a meaningful "confidence level" indication of the evaluators' own expertise
and care. This means, for best results, statistical analysis of the evaluators' scaled (i.e.,
multiple choice answers) or quantitative answers to each criterion. Self -consistency
checks, done by computerized analysis, could detect patterns that were
self-contradictory by individual evaluators, or reveal individual biases on certain topics
by comparison with other evaluators. Weights might be given also to the experience of
the evaluator and his knowledge of the system being evaluated. Evidence of
"collaboration" between individual evaluators (which undermines the independence of
each judgment, and the statistical significance of the collective judgment of the
individual responses) might also be detectable by patterns of identical or near identical
responses on each question. Evaluators are only human, and some measure of the
dimension of depth of significance and self-consistency and bias needs to be made of
evaluations in order to retain objectivity in the evaluation. Once a measurement
individual bias, experience level on this system, self-consistency or care in responses,
etc., has been made for each evaluator of this system by his response patterns, these can
be compensated for statistically. This "purified" or compensation set of results would
have a much greater confidence level. This would have to be done by a separate data
collection and scoring agency that has set up such methods of statistical analysis for any
SAC set, for any software driven weapons systems. It would only work for SAC
quantized responses, which can be quickly and unerringly coded for computerized analysis.

While a limited set (i.e., multiple choice or scaled responses) of answers to each
criterion is necessary for statistical evaluation and measures of groups of "percent of
ideal" achievements of software attributes, it is also desirable to have subjective,
essay-type responses detailing problems or advantages of the software. These of course
are not amenable to statistical scoring, but no set of SAC, however universal it might be,
can completely reduce all problems or successes of a software system to ones and zeros.
The SAC set thus must not exclude essay responses, but in fact should elicit and
encourage them. A quantized SAC set is thus never self-sufficient as a means for
acceptance or rejection of any software, but is complementary to essay-type evaluations
such as might result from reviews and audits, etc. Neither can it replace such subjective
or essay type critiques, but it can add another dimension of "percent of quality" for
various standard factors, which is easily understood by decisionmakers who are not all
familiar with the details of this particular weapons system.

A goad set of SAC will have explicit statements of what is to be measured or
evaluated for each criterion, and does not leave these to be merely inferred, which will
cause larger variance of responses between different evaluators.

298

I A good set of SAC will also have a carefully organized structural hierarchy showing
the relationship of different criteria to each other in as nonredundant a form as possible,
except where needed for self-consistency checks or broad overviews.

Any proposed SAC should correlate as closely as possible to present Mil-Std
provisions, or proposed revisions to those Mil Skis. Otherwise, the SAC is more likely to
be in conflict with the Mil Stds the less it correlates with them. This makes such SAC,
however, "valuable", unenforceable. So, SAC should closely follow applicable Mil Stds,
and at least not be in conflict with them or proposed revisions to them.

But in developing any hierarchical SAC that develops certain factors, and define
and bound the relationships between different factors, some possible improvements to
the Mil Stds will probably become evident from the act of organizing a hierarchical SAC

J struture.Thus, the SAC should not merely be derived largely from the Mil Stds, but
should also bring out possible improvements in the applicable Mil Stds. This make.-- the
SAC and the Mil Stds a recursive pair, each driving the other in turn. This close

I relationship is necessary to justify those SAC and make them less arbitrary, for If not
grounded in the Mil Std provisions (for which we might be able to suggest improvement,
but hardly a total rewrite in our limited time), what are the grounds of justification of
the SAC? That is, on what grounds can we defend the SAC as non-arbitrary, if not by the

I XMl Stds? Only a set of SAC based largely on applicable Mil Stds has much chance of
adoption, for otherwise it will be rejected for being in violation of the Mil Stds, or at

3 least for being impossible to correlate with them. The SAC set should provide a
I convenient way to measure (or quantize) conformance to particular Mil Std paragraphs or

p rov isi ons.

If the methodology underlying any s,!t of SAC has any pretense of being suitable for
"universal" applications, the working of the SAC should be self-evident merely from
f illirng out one such SAC set as an illustrative example.

Iif teresults of SAC formulation and measurement must be understood by far more
people than the number of people doing the formulation of relative weights and
measuring the perceived results, it is more important for the SAC to produce a brief,
easily understood summary result than~ to provide for easy evaluations. Far more readers
would be capable of, and more important, willing to read a summary like "this software
system attains an estimated 74 percent of ideal maintainability, just over the
contractually required 71 percent", than a mountain of technical essays. Such concise
statements can lead into more detail of what maintainability deficiencies exist, but
unless the SAC set lends itself to concise summaries, most readers won't even look at the
details that follow. But even if it is less important to evaluate than to conciselyI summarize, the evaluation method should be essentially the same between systems so as
to facilitate comparisons between different systems.

1 299

The results of evaluation are nearly as "repeatable" (reproducible) as possible. That
is, the responses of an evaluation team, collected together due to statistical checks, etc.,
are nearly the same, whether done on Monday or Friday, or by Team A or by Team B. To
the extent that this is true, the evaluation can be said to be truly objective. Clearly,
essay-type responses or evaluations will probably vary more from day to day or between
teams than multiple-choice scaled responses might vary.

Cost considerations should allow a less exhaustive or less detailed evalaution for
lower cost systems than for high cost, longer lived systems, whether the evaluation is
essay type statements, or multiple choice, scaled responses. Fewer evaluators should be
required for less costly or less critical systems (at the cost of less "confidence" in
results), so that cost-effectiveness measurements do not excessively warp the costs they
are trying to measure. A good set of SAC should likewise make it easy to express lower
required acceptance standards as well, without having to rewrite the SAC altogether.

Weighted Multiple Choice (Scaled) Responses

Varoius "checklists" have long been used to assure that certain stated software
concerns are not omitted or forgotten at various software events. To use Air Force
standards and guidebooks as examples, Section 130, Figure 18, of Mil Std 483 contains a
checklist of considerations for Engineering Change Proposals, called an Engineering
Change Classification Checklist. This is not precisely a quality measurement checklist,
but is similar to one. The Air Force Guidebook on Verification has numerous sections
that amount to checklists of items that a Software Director should check when various
contractor documents are delivered. The AF Guidebook for Reviews and Audits contains
explicit sample checklists (of the "yes/no" variety) for PCAs and FCAs, etc. Various
matrix analyses (such as in the AF Cost Estimation and Measurement Guidebook)
amounts to multiple choice responses (though not exclusive responses) of columns to
rows. Checklists thus range from informal to formal, from single "yes/no" (two column)
responses to multiple choice (various columns), scaled (single answer) to several possible
joint answers.

To the extent that all systems have to satisfy such checklists of requirements in
Mil Stds or Guidebooks used by SPOs and SDs, such a measurement technique has already
been widely used across a broad spectrum of systems. However, for each "checklist"
item, the measurement has typically not been made in terms of a percentage of ideal,
achievable quality which might be reached, and seldom has even a scaled response (of
multiple choices) been used. Usually, answers amount to "yes, it satisfies the
requirement", or "no it does not". Ultimately, exactly such a decision (yes or no) has to
be made, but if this is made immediately, and the estimation of the degree of compliance
is then sacrificed, overall patterns of compliance and collective compliance become
obscured, because the scale or degree of compliance of each item is lost.

300

I

Further, not all factors should carry equal weight, and a mere "yes/no" checklist
approach does not necessarily recognize that some checklist factors matter more than
others. Even if the SPO or SD mentally accords more importance to some one factor
than another, no specific notation is made of how much more important he deems that
factor than the other factor.

I One novel approach of some possible value might be to consider assigning negative
weights to some acceptance criteria when they may be associated with degrading quality
in one aspect, while improving quality in another aspect. For example, in software,
efficiency is a desirale attribute or quality in itself. But certain aspects of efficiency
may detract from maintainability; for those, an evaluation of maintainability might
profitably assign to those factors some negative weight in evaluating maintainability, but
their usual positive weight in evaluating efficiency for its own sake. Too often, instead
of using such known relationships, which include deleterious effects, they are simply
avoided, with the acknowledgment that the results must therefore be discounted
somewhat. But it is much better to make use of those relationships by negative
weighting in some cases, instead of avoiding them and having to admit that the results
must therefore be discounted somewhat. This is touched upon also as a note under level
I of the MODIFIABILITY aspect of Attachment II.

What is ultimately desirable is both a measure of the relative merit or
acceptability of all the myriad factors and subfactors that affect how well embedded
software works, how usable it is, and how maintainable, and also its overall acceptability
in those areas. The AF Guidebook on Software Quality (Figure 6) attributes software
quality to two superfactors: functional performance, and maintainability. In turn,
functional performance is assumed to be composed of factors of reliability, efficiency,
and human engineering, while maintainability is assumed to consist of factors of
tcstability, understandability, modifiability, and portability. In turn, the factor of
rmliability is composed of subfactors of correctness, integrity, and consistency, while
efficiency is made of accountability, device efficiency, and accessibility. Human
engineering is assumed to consist of subfactors of integrity, accessibility, and
communicativeness. The factor of testability is to be made of factors of accountability,
accessibility, communicativeness, self descriptivness, and structure. In the Guidebook's
view, understandability is made of consistency, communicativeness, self descriptiveness,
structure, conciseness, and readability. The factor of modifiability is assumed to be
composed of subfactors of structure, augmentability, and self-containment. Finally,
portability consists of self-containment and device independence. The overlap between
subfactors is graphically shown in Figure 6 of the Guidebook. Superfactors correspond to
level 1, factors to level 2, and subfactors to level 3 in that figure. This guidebook came
out in 1977.

In 1975, AFTEC did a somewhat simpler factor analysis, in its Software Testing
Guide. But it combined such factor analysis with a set of questions, each of which dealt
with some aspect of software quality. Five multiple choice answers were provided as
standardized responses to each statement of software quality. These answers were "a)

I
I
1 301

I

strongly agree; b) agree; c) neutral; d) disagree; and e) strongly disagree". Alternatively,
a respondant could reply "If) not applicable". For example, statement 4 was "the program
contains a capability for tracing and displaying logical flow of control". If the evaluator
itrongly agreed that a full capability existed, he marked "a) strongly agree". If no such
capability existed, he marked "le) strongly disagree". If somewhere in between, he
Marked it accordingly.

The AFTEC approach did not require each evaluator to answer the set of questions
for every module in the entire software systems or subsystem being evaluated. Rather,
it used a "It" statistic to estimate when evaluations converged to "data stability": that is,
when he had evaluated enough modules that evaluating more did not appreciably alter his
overall collective response averages for the system. AFTEC assumed that each of its 35
questions relating to subprogram (module) acceptability, answered independently for each
module evaluated, and its 36 program questions (answered only once for the whole
system) dealt with one or more of 7 "software quality factors". These factors were:
portability, reliability, efficiency, human engineering, testability, understandability, and
modifiability. In turn, these seven factors were assumed to compose three superfactors:
portability was made up identically of portability; "as-is utility" was composed of
reliability, efficiency, and human engineering; and "maintainability" consisted of the
factors of testability, understandability, and modifiability.

The relative fractional importance of each of the seven factors was decided upon
(such that the sum of weights of the seven added up to one). Then each question had a
"weight," which depended upon the factor or factors it was assumed to involve, and the
weight of those factors. Further, the "strongly agree" response (most favorable,
expressing highest quality) gave four points to whatever fractional weight the question
carried due to its assumed composition of one or more of the seven factors, while a
"lstrongly disagree" response gave zero points to its question's factors. The other
responses lay proportionally in between (three points for "agree", two for "neutral", one
for "disagree"; "not applicable" had no effect either way.

Then for the factor-weighted responses, total quality indexes were computed for
each of the seven factors (and in turn for the three superfactors composed of those seven
factors). These indexes, which amounted to percentages of theoretical "perfect" scores
(which would result if all question,: were answered by "a) strongly agree") were then
compared with acceptance thresholds (minimum percentages allowable) that had been
decided upon prior to the evaluation. If the measured percentage of quality or
acceptability was below the predetermined required percentage of quality for that
factor, then that factor was deemed to have failed acceptance. A similar picture was
obtained for each of the three superfactors, and in turn of the overall total made by
summing all seven factors (or all three superfactors). Thus, rejection might occur on any
or all levels of factors, superfactors, or overall total.

302

II

The questions evolved periodically, in part due to comments by users, who
employed the questionnaire's quantized approach to OFP modules, etc. Real-time
(embedded computer) evaluators tended to feel that real time, interrupt-driven
embedded computer programs had unique facets not found in the usual offline batch
processing programs run on general purpose computers. It was admittedly difficult to
find a universal set of questions that adequately served both real-time users of embedded
computer systems, and batch-processing users.

Ultimately, BDM Corporation was given an AFTEC contract, and developed a

revised or new set of questions. One questionnaire dealt with documentation provided
for the program; another questionnaire dealt with the source listing, answered uniquely
and individually for each of the randomly chosen modules taken to be sufficient for
statistical purposes. Here, however, the number of modules was predetermined for
selection, rather than being based upon actual covergence based upon the sameness of
answers. To illustrate the numbers and hours typically involved in such questionnaire
evaluations, it was deemed necessary to evaluate, for 4 F-16 OFPs (Operation Flight
Programs), 30 subroutines in the Fire Control Computer OFP, 30 in the Stores
Management Set OFP, 29 in the Fire Control Radar OFP, and 26 in the Inertial
Navigrition Set OFP. A minimum of five evaluators was required by the AFTEC criteria
for each (sub)system, and each was projected to spend an average of 82 hours answering
tne documentation questionnaire (once) plus the module questionnaires an average of 29
times. All of the software engineers were familiar with the systems they were
eva!uating: a "biodemograpl.ic" questionnaire recorded general software experience as
well as each individual's experience on the system he was evaluating, for use insb!,tistical evaluations of confidence.

The 13DM version was published as the Software Maintainability Evaluator

Giudelie Ilandbook (SMEGH), (BDM/TAC 78 687 TR, 24 November 1978). In addition to
a nwi~ed or new question set, questions were organized in seven separate sections:
amo hlarity, descriptiveness, consistency, simplicity, expandability, instrumentation (test
reeordability), and general (recapitulative). Rather than a separate questionnaire set of
emhcdded computer users, and a different one for batch or general purpose users, the
BI)M version adopted a disarmingly simple solution to this dilemma. All users were
required to answer every question, but if the evaluator felt that any particular software
point was "not applicable" to his system, an "a" (best possible) answer was given. The
rationale was that if a given software concern or potential problem did not apply to this
4y tem, then it could not have a problem in this area, and so had the highest possible
qutality in that area.

This leads to a slight positive bias in results, but is well worth that, because it
nonetheless provides a solution to the fact that between different systems, evaluators
would bypass (mark "N/A" for not applicable) a question on one system that they would
address on another system. This made it difficult to compare results between two
different systems. In fact, even on the same system, two evaluators who worked side by
side might even have honest differences on the applicability of a given question to that

I
I
1 303

I

system. One might feel that it applied, and the other, from a somewhat different
viewpoint or line of reasoning, might feel that it did not. Where "not applicable" answers
varied even between the responses on the same system, it undermined the weighting
scheme, as an "N/A"l effectively removed that question from the weighting. By requiring
a judgment from each evaluator on each question, and removing the "N/A"l option in
favor of an "a" (best quality) answer, all weightings of questions remained intact.
(Weighting was now a function of which of the seven sections the question fell in).

In all cases in which an "a"l answer was gliven because the evaluator felt that the
item was not applicable (therefore no problem at all), he was required to mark "N/A" for
that question number on a separate coding form that contained comments. Because
these comments were likewise keypunched for retention with his multiple choice
responses, it was possible to search on "IN/A"l answers which had resulted in "a"l answers,
if that was desired. The comments provision was provided to let evaluators state their
rationales for a given answer if they felt torn between two different viewpoints. A,; all
additional multiple choice answer on a question, after answering the question with a
multiple choice answer, whether he "had trouble answering this question", and/or "a
written comment is transcribed on AF Form 1530, punch card transcript". If several
evaluators had trouble with a particular question, the question itself might be the cause
of difficulty (signalling one that needed future revisions), if that happened on many
differen' systems. Or if evaluators had difficulty answering the question on only one
system it most likely indicated ambiguities or conflicts within that system).

The answer sets were somewhat modified, as follows: "a) completely agree; b)
strongly agree; c) generally agree; d) generally disagree; e) strongly disagree; and f)
completely disagree", with the positive statement of quality that comprised each
"iquestion". (In addition, any question could have a second and/or third response, Ili) Ihad
difficulty answering this question; and/or j) A written comment is recorded on AF Form
1530"). The six standardized responses were notable for the absence of any allowed
fence-sitting or "neutral" response. In the earlier system, if evaluators did not know
immediately which type of answer was most appropriate to a given question for that
particular module or overall program documentation, they tended to "play it safe" by
marking the "neutral" response, rather than spending a lot of effort to resolve the
dilemma in their minds. This new form tended to require evaluators to put more thought
and effort in their answers, and thus to make them more meaningful.

One other, more subtle difficulty resolved by replacing the "not applicable" responses
with "a" responses was the mAtter of evaluator independence of judgment. The
statistical measures of bias and confidence depended on each evaluator's independence.
If a collective answer were given to a question by all evaluators (especially those who
were physically co-located), this undermined the statistical checks for bias because it
was as if only one response by a singly "composite" evaluator were given. The reason for
multiple evaluators was to provide independent samples or answers to allow those
statistical checks. If only a joint or collective answer, or an answer by only the

304

individual most knowledgeable on the system resulted in a single response which was
merely repeated by other evaluators, differences in perspective were lost. For example,
a software engineer who had figured out for himself, or had previously asked the prime
contractor the answer to an ambiguity, might, with this knowledge, give a more
favorable answer than a relative "novice". But if there was a real lack of quality on an
aspect, such as explanation of the computerized function, the relatively less experienced
person's answer would more readily express frustration with a poor or nonexistent
explana tion.

When some questions could be answered simply by an "N/A", without requiring ascaled or weighted answer, evaluators tended to talk over the question between
themselves much more: this trend also undermined their independence.

I* One difficulty, however, with an excessive concern for providing a sufficiently
large number of warm bodies for evaluations to give statistical checks and a sufficiently
large number of modules, each of which required a complete questionnaire set of
answers, was the time factor. For the F-16 evaluation nearly a man-year of effort wasreqfired, just to fill out the questionnaire on maintainability, due to requiring a sample

of an average of 29 modules each, among each of five evaluators for each system. That
is a significant cost, and managers might well wonder if it would be better to spend some
of that time running particular tests to find software errors. Further, while the initial
use of a questionnaire takes a little "getting used to", after evaluating a large number of
rnodu!cWs on the same system, boredom becomes a problem in getting careful answers, and
particularly in getting written elaborations on coding forms. It might thus actually
provide better quality answers and more confidence to avoid overkill in producing 14
pounds of answers, to reduce somewhat the number of randomly-selected modules
oevAluated, and the number of evaluators, particularly for smaller systems that do not
.iave ldrge numbers of people available and knowledgeable about them in the first place.

The latest BDM effort in refinement of the original AFTEC approach does help
resolve many of the aforementioned difficulties in software evaluation for the standpoint
of acceptance criteria. That particular questionnaire was (intentionally) limited to the
subject of maintainability-that is, the built-in aids to allow nondevelopers of the original
system to make needed changes to the software as problems arose.

AFTEC has recently produced a separate questionnaire set, in exactly the same
format, and with somewhat streamlined explanations, for another area of software
concern. This is the Software Operator Machine Interface Questionnaire (SOMIQ),
related to software-only aspects of "usability" of the operator consoles on software
systems. (This is, interestingly, almost exclusively an embedded-computer concern,
much less related to batch users than, say, maintainability software acceptance criteria).

The SOMIQ addresses six areas: assurability, controllability, workload
reasonability, descriptiveness, consistency, and simplicity. It is still being refined, with
little or no experience on it as yet.

I
|

'I U .)q

I

It seems apparent that different SAC sets are required for different superfactors,
such as maintainability and usability. It is also apparent that to achieve widespread
acceptability, such SAC must be more closely tied to Mil Stds and help drive them with
improvements, also, as the contractual force of such SAC derives in considerable
measure from the force (or lack of force in some cases) of the Mil Stds. This does not
mean that a useful SAC set should be limited to Mil Std paragraphs; it should not,
because any Mil Std expresses more general or overall concerns, and many SAC features
are necessarily more detailed. They should be complementary and mutually supportive,
not mutually exclusive, as SAC criteria.

Attachment 11 contains yet another set of SAC. It consists of maintainability
criteria (partly derived from the AFTEC/BDM questionnaire), and testability criteria.
Usability considerations are probably best addressed at present by the AFTEC
questionnaire (SOMIQ). Maintainability is most thoroughly addressed here, and relies
somewhat additionally on the provisions of Mil Std 1679. This is not to say that this
rough draft is "better"' than thie BDM questionnaire on maintainability, (for example), but
in Attachment IT the points are organized in a more hierarchical structure, which is more
in line with the paragraph number organization of Mul Std 1679, and hopefully thus more
capable of interfacing with its concerns, and of exposing changes which might profitably
be made in Mil Std 1679. The questions, or points, in Attachment IT also consist of as
many as five or six subconcerns, which, as each subconcern occupies one or more lines by
itself, could be further broken down into smaller questions.

But the main reason for Attachment II is to provide an example of how the
AFrEC/BDM methodology might be applied. It may be that this methodology, with the
same kind of standardized answers, might be applied more broadly to any kind of
software acceptance process, such as a review, an audit, or an acceptance test. The only
"new" requirement would of course be the generation of an appropriate set of questions
or rather statements about "quality" aspects to be satisfied by each of the applicable
events or milestones. Products (e.g., documents and tapes) might also be the subject of
such a methodology, subject of course to considerations of the amount of time required
for each to be answered. (in this respect, the AFTEC/BDM methodology is perhaps even
better applied to events and products, because the big time crunch for software
evaluation, namely evaluating large sample numbers of software modules, would be
reduced to a single event to evaluate, not a large number of events.)

If Panel D were then merely to recommend the use of this established and tried
methodology already in some use within DOD, that might constitute much of its
effective interface with the other panels, by suggesting the method for such software
acceptance criteria. The other panels could, if they wished, adapt this method by
providing the content on those products or events where their panels, have the most
expertise or cognizance of the event or product. But such a set of SAC should never be
considered an exclusive one or a self-sufficent one; it should remain an optional but
available tool to supplement the traditional SAC function as performed by reviews,
audits, and tests, as detailed in the Mil Stds, and other documents.

306

I
I

A recent Air Force Inspector General's item (TIG Brief 3, 1979, p.3) noted that "we
may tend to measure what is easily measurable, not necessarily what is useful". It
suggests that instead of finding the easiest things to measure, we would instead "select
those things that are most meaningful", by asking the following questions:

1. Who will use the 'measurement'?
2. How will it be used?
3. How important is it with respect to the toal inspection?
4. Are there other things we have overlooked that are difficult to measure,

but significantly more important?"

Clearly, the quantized approach is only one of many tools, but it may help measure
and put a finger on software quality aspects, in terms oflacceptability, that are
otherwise difficult to measure. It does produce convienent, easy-to-read one-line
summaries of "percent of ideal perfection" for any number of hierarchied software
attributes which can be read and understood by the widest possible audience, including
the President and Congress, if they so choose, at little cost of valuable time. It can
never replace detailed essay itemizations of particular problems, but may help put themin perspective.

IThe fact that such an approach makes explicit statements about the weight or
relative importance of the factors of software quality deemed most important for a
particular system puts those assumptions "up front", where they can be seen (and
debated). This is more easily provided before contracts are bid on, as the criteria remain
relatively stable, but the assessed weights and acceptance threshholds upon which the
oontractor will be judged in terms of his performance are again explicitly stated in fair
erms.

Such a yardstick of relative stability is in its infancy. If it is a valuable tool, its
value can only be obtained by at least making its existence known and by developing
various applications of this methodology.

3!
I
!
I
1
1 307

I

Attachment Ilh Proposed Detailed Acceptance Criteria

For Software Maintainability

308

Detailed Software Maintainability Acceptance Criteria

I. Software Is MAINTAINABLE

A. Maintainable software is UNDERSTANDABLE in structure and DESCRIPTION.

1. The software is MODULAR and has SIMPLE STRUCTURE which follows
stated standards.

a. Unambiguous control structure characterizes program flow (Control
always returns to the calling routine; and priorities or hierarchies are predetermined in
case of competition, etc.).

b. Top-down, structured, forward-only control flow is from higher to
lower routines (go-to's are scarce, and not backwards, except loops): fev statements need

I labels.

c. Each routine does only related functional tasks, and each functionaltask,, is an easily recognizable block.

d. Each routine has a single entry point and a single exit point.

e. Each decision point, and each iteration loop, has a single entry point,
and each has a single exit point.

f. No indirect, tangled, in-and-out, backwards, or "bird's nest"I ,-mnhiiig occurs, and no "scattergun" branches occur, to widely dispersed, ill-ordered
t ar'gets.

g. No indirect, tangled, in-and-out, or excessively indexed addressing
occurs, and no "scattergun" addressing occurs to scattered, ill-ordered parameter,;.

h. Data structures (e.g., tables) are simple, hierarchical, modular, andIlear, and illuminate relationships between elements, but avoid multidimensional arrays.

i. Variables have only one purpose or use (for example, not used for bit
flags and latitude); aliases are minimized but always identified, and overlays or
equivalencing (memory sharing) is minimized, particularly unlike types (real/int).

j. Globals (variables or constants used by two or more routines) are
minimized and are hierarchically organized to avoid date communication complexities.

m k. Masking of bits, bit manipulation, machine dependencies, etc., areI minimized.

I
I

1 309

W

I. Interdependencies between routines are minimized to reduce
complexities.

m. Sequencing dependencies (on interrupts, etc.) are minimized and
made clear.

n. Modules do not caU themselves, nor are subtle, tricky techniques
used: self-modifying addresses are avoided, and self-modifying instructions are avoided
which mutate with data or register values.

o. Compound control logic (IF(NOT A. AND B. OR C.)GOTO) is avoided
where possible, and all unnecessary nesting of control is avoided.

p. Repeated code is subroutined for repeated access, not duplicated

redundantly.

q. No unreachable instructions exist: and little unneeded code exists.

r. Routines average 50-100 executable statements or less, and none
exceed 200; only one executable statement exists per line of source.

s. There are not excessive numbers of expressions controlling branches
(IF, DOWHILE, CAS); excessive numbers of operands are not used in this routine.

t. Routines are grouped functionally, hierarchically, and logically in
the source.

u. Specification statements (formats, equates, etc.) are grouped
functionally, and are not unreasonably far from their uses.

v. Program control can be modified without modifying data structure,
and data structure can be modified without modifying program control; i.e., data
structure and program control are independent (vs. I.B.5.j).

w. The CPCI has 20 percent or more spare time and 20 percent or more
spares in all memory types, so that understandability has not been forcibly sacrificed for
efficiency's sake.

x. A common, approved high-order language (HOL) is used, and the
source is never in microcode.

y. No unnecessarily complicated math beyond basic algebra is used if
at all possible, and parentheses and conventions help clarify compound math expressions.

z. Alphanumerically- and location-sorted cross-references are supplied
with, are part of, and are based upon side-by-side listings of source code and its resultant
object code.

310

(1) Each data name is referenced to the location (locally and
globally) of every other :statement which can access that data name.

(2) Each statement that can be branched to or invoked is
referenced by the location of all statements which can transfer control to it.

(3) Each routine is tied to the locations in all other routines that
may call it.

(4) All cross-references are tied to the smallestAcompilable/assemblable routine names (subroutine VELOCX, for instance).

(5) For machine-generated cross-references, a separate printout
of the cross-reference is available which contains footnotes correcting all errors in the
cross-reference, which result from addressing offsets and indexing, etc.

listng.(6) All external references are resolved in the cross-reference

(7) The cross-reference aids understanding of
initialization/modification of all variables.

aa. Programming conventions and documentation follow approved specs,
but these are not needlessly vendor-peculiar; instead, they follow industry standards.

bb. Resource allocation (storage, timing, mass storage devices, 1/0
channel allocations, consoles, etc.) is fixed throughout program execution.

2. The source code listing is SELF DESCRIPTIVE, and the code and its
purposes are EXPLAINED.

a. Parameters (variables and constants) are fully described as to type,
access frequency and protection, scaling, range, limits, accuracy, precision, bit
resolution, etc., in central parameter description blocks, and in using routines' preface
comment blocks.

b. Adequate comments always accompany data organizations, whether
global or local, and fully describe data structures and hierarchies.

C. Adequate comments explain the entire program's purpose, structure,
priorities, sequencing of routines' cycles, relations between functional groupings, and
initializations.

d. Adequate comments exist at the beginning of each functional
grouping of routines, and explain the functional grouping's purpose, and the

interrelationship between rou tines (structure and interfaces), and initializat ion.

311

e. Preface comments meaningfully and usefully summarize each

routine:

(1) Prefaces detail the purposes and functions of each routine.

(2) Prefaces detail the limitations and uniquenesses of each
routine, e.g., interruptibility, accuracy, time available, 1/0 data limits, machine
dependencies (e.g., shifts, formats, word sizes), algorithm peculiarities, stability
problems.

(3) Prefaces detail unusual exists or terminations; e.g., for power
loss and recovery or restart, error handling and error recovery, interrupt sources, types,
rates, and required responses and save/restores.

(4) Prefaces suggest test input data and output results.

(5) Prefaces detail input and output data (including ranges and

limits), initialization (including for testing), register uses, overlays or equivalences, etc.

(6) Prefaces outline logic sequencing of control, calls to other
routines, and reasons for these.

(7) Prefaces list other routines that call this one, and under what
conditions or restrictions, if any, that the calls are made.

(8) Prefaces state the routine name, revision number and date,
programmer, and references to source or derivations for all algorithms used.

f. Comments throughout the body of each routine's source code
illuminate it, giving the purpose and operations of each lowest level block of source code.

(1) Sufficient, but not excessively long, blocks of comments
clarify each task, and intermediate results are described in stepwise fashion.

(2) Comment blocks provide "road maps" for decision points and
help find targets (labels), and the purposes of all branches are made clear.

(3) Consistent and separate indentation exists for statements
which outline nesting of control and hierarchical sequencing of control flow.

(4) Local comments explictly warn of potential side effects, or
widespread or large changes in operation, if certain pieces of code (statements) are
changed.

g. N~'ames or labels of parameters or progra.m locations are
self -descriptive.

312

1(1) Names or labels of parameters (variables and constants) denote
the function of each.

1ewe aaees (2) Names or labels of parameters help identify relationships

1(3) Parameter names distinguish between global and local
parameters, and distinguish by type and length (single vs. double precision, fixed vs.

flaig1on) (4) Parameter labels are in logical, hierarchical, understandable,
easily found sequences, and are centrally located in easily found blocks.

1(5) For each parameter, particularly inputs/outputs, adequate
coding comments exist. These describe what that parameter represents, in terms of full
descrip ti on (meaning), engineering units, ranges, limits, required accuracy, precisionI format, content, scaling, rates, quantity if appropriate, data type, and source/destination.

(6) All data lists (arrays) are columnized for easiest readability.

1(7) All source statement instruction labels are meaningful aids in
finding them, and source statement labels are not used except for required branching and

addessng.(8) Modules can only access data which has been explicitly
declared available for access.

Ih. All input/output (1/O) dependencies and peculiarities are well
explained.

I(1) Sequencing requirements and dependencies (e.g., on interrupts)
of the I/Os are explained.

weldsrbd (2) All reservation: of storage for buffers, 1/O variables, etc., are

(3) All peculiarites of external peripherals or system interfaces
are well described, or cross-references point to detailed explanation of each in available

L. All required data conversions, particularly for data entry and
display, and all methods of accomplishment of such conversions, (analog to digital or vice
versa, or base-number conversions or character transformations, for example) are
explained.

3. Source statements and descriptions are (self and mutually-) CONSISTENT
and uniform.

1 313

a. An explicit, uniform method of structuring and describing each
routine is published and each routine follows those standards and all other imposed
standards and specs.

b. All subcontracted design and coding agrees with specifications,
standards, and forms imposed contractually upon the prime contractor by the
Government agency.

C. All flowcharts (detailed or general) agree with and describe all
source statements, and match source indentations and labels showing hierarchies and
flow of control.

d. Uniform comments describe inputs, outputs, intermediate or local
variables, order of arguments, purposes, and processing, and agree with and describe the
source statements.

e. Functionally related data items are logically grouped and uniformly
described.

f. In each routine, input/output global variables are ordered in logical
groups, and understandable references point to full descriptions, if these are not fully
described here.

g. In each routine, local variables are logically grouped and uniformly
described, and are near and prior to statements using them.

h. In each routine, logical groupings of declarations (integer, real, data,
etc.) are mnade, along with uniform placements of formats, error exists, comments, etc.

B. Maintainable Software Is MODIFIABLE.

1. (Utilize the criteria of l.A (UNDERSTANDABLE STRUCTURE AND
DESCRIPTION); do not rescore.

2. Source statements are CONCISE and produce EFFICIENT relocatable
object (matching) code.

Note: In some ways, efficiency and conciseness contribute to modifiability, and in
other ways, some facets of efficiency detract from modifiability. Because it is known
that some aspects of efficiency adversely affect modifiability (and also
understandability), the factor of efficiency and its subfactors are usually avoided in any
calculation of modifiability, and evaluators state that the measurements are not fully
valid because measurements of efficiency conflict with measurements of modifiability
and understandability, etc. But it is a mistake and a missed opportunity to avoid the
interaction of efficiency with modifiability and then have to apologize for it and discount
the results to boot. Rather, the measures of modifiability should include the measures of
efficiency, not exclude them, and take into account the positive and negative effects of

314

various aspects of efficiency on overall maintainability. To do this, negative weights are
assigned to those aspects of increased efficiency which adversely detract from
maintainability/modifiability considerations. And we assign the usual positive weights toI those aspects of efficiency which contribute to maintainability in a positive sense. Only
this approach (of assigning some negative weights, in computing maintainability
modifiability measures, to essentially positive accomplishments of certain aspects of
efficiency) truly takes such effects into account. A separate measure of efficiency by
itself, for example, can be computed by taking the absolute value of all weights (so that
negative weights are made positive for the purpose of measuring efficiency by itself) to
get a good measure of efficiency achieved purely in terms of efficiency.

a. Low-level coding to enhance efficiency in some small routines has
not caused greater overall system inefficencies or extra system overhead by causing
excessi ve competition for input/output resources, nor extra saves/restores for
re-entrance, nor increased burdens of interrupt queueing or processing of interrupts, 1/O.

b. Implementations for greater efficiency have not created needs for
more extensive program modifications than would otherwise be required when changes
must be done.

C. Resource utilization measurements (e.g., execution time, numbers of
I/Os) exist, and are readily accessible without code patches, etc.

* d. The programming language utilizes optimizing compilers, etc., which
can optimize object code by automatically making subtle changes in program logic.

* e. Implementations adapt the program to different modes with little or
no operator input needed, though this requires more complex software programming.

* f. System utilities for this CPCI (sort, search, etc.) are carefully
optimized, even if this required low-level assembly or tricky programming for most-used
one.

g. Data tables are set up for most efficient execution (operations done
m ost often are done first, and binary splits are used) even though this may make them
harder to follow.

h. Outputs have no more significant digits than inputs, and errors are
minimized (rounding, truncation, etc., are done last), yet system accuracy requirementsj are met.

i. Mixed-mode arithmetic or needless data transformations are avoided

whee osib.j. Computations are efficiently spaced (no unnecessary times,
distances, etc., are done).

315

k. Non-loop-dependent operations are done outside of loops.

3. Present resources used, limits, and present system capacities are
completely described.

a. All architectural or configuration usages and limits are described at
the start.

(1) Timing is used up, and limits (time reserves left) are stated at
thle start.

(2) Main computer memory is used, and limits (memory reserves
left) are stated at the start of the program in the Executive, or in the data base
cornments.

(3) Usage and limits (remaining reserves) of each type of
peripheral memory or mass memory are explained, especially for memory types which
are not interchangeable.

(4) Usage and limits (e.g., remaining reserves and speed) for all
buses, 1/0 channels, 1/0 controllers, external devices, etc., are commented on in the
Executive or data base.

(5) Interrupt structure limits which could stymie growth are
clearly stated in the Executive and/or interrupt handler hierarchy.

(6) Language or word size limits (affecting addressing ranges,
etc.) are explained.

b. Comments explain or point to documents which describe constraints
on inserting, deleting, or modifying source or object libraries (including protection
feat ures), particularly dependencies on support software idiosyncrasies.

C. Function capacities and limits (e.g., present number of targets
simultaneously trackable) and full load constraints (e.g., extra saves/restores on
interrupts if time reserves disappear) are described, both for software, and for external
inter faces.

d. All dynamic allocations of resources (storage, timing, priorities of
hardware services, etc.,) are explained in comments, which also explain how to expand
storage, to what limits, whether dynamic or fixed.

4. Modifiable software is EXPANDABLE.

a. At least 20 percent of timing is still available (unused) as reserves
for growth. (For high change system, 40 percent is desirable.)

b. Internal instruction memory reserves, already on board, are 20
percent or greater. (For high change systems, 40 percent is desirable.)

316

C. For each type of 1/0 or data base memory which is
non interchangeable with other memory carried on the system, at least 20 percent is
spare (unused). Thus, the 20 percent margin must not only be satisfied for memoryI collectively, but individually, so that one unique type with only 5 percent spare cannot be
"balanced" by another type which has 50 percent spare but which cannot replace it (e.g.,
ROM vs. RAM, or incompatible lengths).

d. Spare data throughput capacities (1/O channels, interfaces, buses,
etc., exceed 40 percent (60 percent is desirable for high-change systems).

e. S pare interrupt levels or channels are sufficient for anticipated
growth.

fuuegrwh f. Peripherals' limitations (mass memory, displays, etc.) will not stymie

g. Word size for words used for addressing are not too small to permitI reaching (higher) addresses that might be required with future program growth.

h. Physical spare room (cubic inches of space available) is sufficient to
accommodate anticipated growth in all memory types or channels carried on the system.

i. All full load constraints (e.g., extra saves and restores of data andIregisters, or for interrupts when at the edge of exceeding available time) can be taken
care of.

j. Adequate growth potential exists for all function capacities
(number% of simultaneously trackable targets, etc.) or function limits (response time,

Ik. The volume of data each module can handle appears unlimited (e.g.,
sorts do not need to be revamped merely to accommodate bigger arrays).

I5. The software is CORRECTABLE: State ments, para meters, and
initializations are easily found, handled, and changed.

and hanes.a. Program structure aids, not hinders, function insertions, deletions,

b. All parameters are identified, which could be modified withoutI impacting system flow.

c. Changeable attributes (e.g., convergence) are named, and initialized
5 in one place so that array sizes, 1/0 read-write unit numbers, arguments passed between
I routines, etc., utilize names which need only be changed once, where initialized

centrally; this prevents having to change repeated fixed numbers in scattered locations.

1 317

d. All variables are centrally initialized; near or in the hierarchies that
use them, in the case of local variables, or in a central data base for global variables.

e. Constants (local or global) which could change are so labeled, and
are initialized in appropriate blocks that are easily found and easily changed by address
or name.

f. Statements (executable instructions) are easily found and corrected.

6. The software is portable (SELF CONTAINED and DEVICE INDEPENDENT)
and SUPPORTABLE.

a. While the source code (statements) is as much as possible in the High
Order Language (HOL) of widest possible use and DOD-approved, it does not rely on
uniquely-modified host compilers or assemblers, nor unproven host compilers, nor on
obsolete languages or compilers falling into disuse.

b. At the time of acceptance, all software is totally available, in
,source language (without machine patches or manual intervention required), on mcdia
capable of being read and written on available agency computers.

C. Interfaces between target machine -source and object language, and
host processing, are simplified particularly in terms of minimizing host machine
dependencies.

d. All reference routines not in the program are available on libraries
(on peripherals, if necessary), in -;tandardized formats and descriptions and arc
operationally usable "as is," and are in a form which can be copied and transferred to
other machines, if necessary.

e. The instruction set is upward- and downward- compatible on this
family of computers.

f. 411 assumptions about the operating system (1/O, interrupt levels,
etc.) are stated.

g. Software organization permits installation in stages, if desired (e.g.,
first the Executive, then add 1/O, then modes), but does not require it.

h. Machine dependencies (parity, unusual word sizes) are centrally
explained, and all such dependencies are collected in centralized blocks; minimal mixing
of applications functions occurs, with I/0, machine dependencies, etc.

i. Word-size -dependent operations (e.g., processing literal strings,
numerical convergence) contain self checks against length incompatibilities.

318

j. Table values, in a form independent of machine types, drive
most-used routines.

k. Any required source statements involving branches, transfer to
labels, and relative branches (e.g., "down 17 statements") are not used in any cases that
cannot satisfy the forward-only, to-to-less conventions, such as when low-level (assemblyj language) routines are unavoidably required.

1. The source statements are all traceable back to fully satisfy thej design specs, and like the design specifications are as device-independent as possible.

M. The weapon system is easily "erasable" for a reload (not burned

permanently into read-only memory, and not in microcode).
n. Software and hardware (though somewhat modified) were proven by

previous use of this system or one of its family used in prior operational weapons systems.

7. SUPPORT RESOURCES are ADEQUATE.

a. Available host computer resources, especially if shared, includeI sufficient guaranteed time to update source, compile, simulate, and verify results.

b. Adequate support facilities for host computers are provided on hostI or resident gear. For example, adequate mass memory and programmer terminals are
ava ilable.

C. Adequate host-supported utilities (sorts, splits, merges, prints,
updates, file maintenance, debug packages, inter-device copies, etc.) are available to
support any unique one-time or special processing which may be required occasionally.

Id. Configuration control software is available on host or resident
equipment. This is capable of identifying revisions of all software, protects against
unauthorized updates or changes, and maintains approved and experimental software on
host machines.

e. Adequate support software, written in High Order Language to the
maximum extent, is operational on machines identical to those available to agencies
tasked to maintain and support the weapons system software, and successful transfer to
agency machines is guaranteed.

If. Support software can process all source statements into relocatable
object modules.

g. Support software can link the selected relocatable object modules
into an absolute executable load module.

319

h. Support software can generate on appropriate media an executable
image which can be physically loaded into the weapons system.

i. Support software is capable of adequate simulation or emulation of
the weapons system behavior, by execution of test programs based on the weapons
system program.

j. Adequate test cases and procedures and expected results, or other
verification means, are provided to demonstrate that support software does not cause
misrepresentations during processing of source and object language.

k. Adequate test stands, and data reduction facilities are provided, to
support testing of both support software and weapons system software.

I. Adequate training has been provided for, to help maintaining
personnel identify and implement new system requirements involving recoding of source
statements and patching of object language, and to help them identify, isolate, and fix
problems and test their solutions.

C. Maintainable software is TESTABLE.

I. (Use also the criteria of l.A. (UNDERSTANDABLE STRUCTURE AND
D ESC RIPTION): Do not rescore.

2. Successive documents MAP correctly and completely to (and cross
reference) each other, in order to allow testing.

Note: The Software Acceptance Criteria for external documentation (each document
outside of the source code) would be a separate set of SAC for each document or set of
documents which would consititute a different task. But the items below apply
specifically to testability features of the software, which depend on portions of these
external documents.

a. Each specification (spec) maps correctly and completely into
successive specs.

(1) Thus, the system spec maps perfectly into the development
(requirement) spec.

(2) The requirements spec maps perfectly int o the test
requirements/test plans spec.

(3) The requirements spec maps perfectly into the product (design)
sp ec.

(4) The produce (design) spec traces perfectly into the CPCI
source code.

320

(5) The CPCI test plan maps or unfolds perfectly in the CPCI test

proc dur s s ec. (6) The CPCI test procedures, when run, result in CPCI test
reports (test fulfillment).

(7) The requirements and design specs are traceable into
handbooks and manuals.

b. Each spec fully cross;-references (by paragraph numbers) all specs to
which it relates.

downto ostC. Each spec is hierarchically organized from most general concerns
downto ostdetailed concerns, with numbering schemes for paragraphs, figures, etc.,

which correspond between successive specs to old traceability and testability, and to
facilitate changing, deleting, or adding functions and corresponding design and test of
those functions in successive documents.

d. All parameters, beginning with requirements specs through design
specs and code, have consistent nomenclature which immediately identifies each

* parameter clearly and unambiguously through various stages of fulfillment in successive
specs to ensure 1/0 traceability and testability (e.g., 'lambda' in one doesn't become 'pv'
in the succeeding spec); and the terminology is easily understood.

e. All off-the-shelf documents (previously developed for other uses)
have been fully and accurately adapted to describe all idiosyncrasies of this weapons
system; this ensures traceability and testability.

f. Specific information, especially that relating to testability, can be
easily found within any document, by means of volume indices, tables of contents,

glossaries, etc.

g. A master list of all documents pertaining in any way to this weapon
system software is available, and briefly outlines relationships between documents in
such a way as to aid traceability and testability of functions.

testble h. Each document contributes in its designated manner to assure these

requremets. (1) The CPCI (code) has been developed in accordance with proper

(2) The CPCI performs intended functions satisfactorily in the

mission environment.

(3) The CPCI does not perform unintended functions.

321

i. Geometric drawings of vectors of other physical relationships
adequately portray all such relationships where necessary, on separate pages in the
appropriate specs to enable understanding of the process and interpretation of test
results.

j. All sources (cited to page numbers or paragraph numbers of the
reference) for all constants and algorithms are stated in the appropriate specs, in those
cases where derivations are not provided in appendices, etc., so as to facilitate
cross-checks of methods and results with other systems' results.

k. All intermodular relationships of any complexity are graphically
portrayed by functional block diagrams, sequencing trees, timing and diagrams, displays,
etc., in appropriate specifications, in testable terms and formats.

1. All documents are current (up-to-date descriptions of the latest
requirements, design, code, tests, manuals, etc., which exist for this system).

M. All documents and code are deliverable in increments or builds as
available.

n. No document or piece of code is vendor-proprietary (such that the
Government cannot reproduce or disseminate it to other Government agencies or
companies).

3. Requirements specs (including interface control documents or program
requirements specs, and data base requirements specs) are testable and complete.

a. Rcquirements specs are organized hierarchically, from most general
function down to the most detailed subfunction level, in accurate, complete, testable
terms.

b. Requirements specs give full details of the technical and mission
requirements and interfaces, all of which were allocated to this CPCI by the system or
system segment spec(s), in testable statements of sufficient accuracy and completeness
to permit CPCI testing and design to be defined based upon this document.

C. The requirements (development) spec contains a matrix of
verification test methods, which shows how (by what type of test) each function and
subfunction, down to the lowest level of requirements, will be satisfied.

d. For each subfunction, the method of verification appears to be
adequate and appropriate, as stated in the requirements spec; nonver if ications are
just if ied.

322

Ie. Data base and data requirements are clearly stated in the CPCI
requirements spec, and conform to interface control documents which describe the
relationships of data that are passed between other equipments, operators, software, or

data bases.

f. For all input/output data elements, the requirements spec gives its
j attributes: data type, protection, usage (frequency) rates, quantity, range, limits,

precision, accuracy, bit resolution, format, content, meaning, units, source or
destination, transmission mode or channel, etc. These descriptions are given in a formj which facilitates developing test plans, etc.

g. Each functional requirement is explicitly, quantitatively, and
testably defined, in terms of inputs, processing, outputs, data requirements, data base,I parameter definitions and symbols, output dependencies upon inputs, interfaces, required
algorithms, accuracy, timing, exception handling, constraints, and pertinent performance.

h. An available error budget or accuracy control document helped drive
the requirements spec, as evidenced by frequent cross-references between the two.

i. The requirements spec describes processing required to handle
I improper, incorrect, or out-of-range inputs (provisions for integrity), and resistance to

noise (robustness) is provided for and described.

j. System functions and resource margins (e.g., timing and memory)
are' reasonably feasible at acceptable risk within allocated resources and schedules.
(Unachievable requirements and designs make test planning and other routines difficult.)

Ik. Memory estimates, computation speed, 1/0 budgeting, and other
resource utilizations are reasonable, self -consistent, feasible, and consistent with
interface control documents and accuracy control specs, and hardware or systems specs,

in resource allocations.

1. All requirements were clearly labeled as such (not confused with

side comments), and concisely stated (without needless boilerplate).

M. Requirements specs have separate sections for external interface
definitions, for defining each major program function, and for defining the program
global data base requirements; major parts of the requirements specs are self contained.

n. Requirements statements for design, development, functional

performance, and qualification testing are mutually consistent, complete, and reasonable.

o. Interface requirements statements take into account all types of

nterfaceg:

1 323

(1) Software-to-hardware interfaces (e.g., sensor 1/O, computer
and control 1/0, displays) are completely and accurately defined.

(2) Software-to-software interfaces (e.g., data transfers,
computer execution control transfers) are completely and accurately defined.

(3) Software-to-personnel interfaces (inputs from operators,
formats and medium of manual inputs, associated control, and data for display) are
completely and accurately defined.

p. All requirements for design constraints are fully and accurately
stated (requirements for safety and human performance requirements, specifications of
programming language or limits on types of instructions used, memory allocation or
protection limitations, self-test features (including recording for later diagnosis of
faults), and processing rates required for external interfaces, etc.).

q. Requirements are stated for self-metric capabilities (e.g., continual
recording of least-time left over from processing, nearness to data or memory
saturation, recording of all faults by unambiguous flags for later diagnosis).

r. Requirements provide for maximum recovery from errors or loss of
function, such that the system reverts to the next best usable mode, and such
requirements are stated in testable form.

s. A requirements chart or matrix exists which accurately depicts
interrelationships between requirements in such a fashion as to aid test planning.

t. Requirements are stated fully, accurately, and testably for
startup/restart, initialization, executive control of hierarchied execution, including
timing allocations, and exception handling (e.g., interrupts and errors).

u. Requirements are stated fully, accurately, and testably for backup
modes, and to maintain best available modes in case of degradation or loss of function.

v. All accuracies and precision and bit resolution/scaling for all inputs,
outputs, and algorithm and equation processing are stated in testable terms, and appear
to be feasible and to provide the required accuracy throughout the requirements.

4. Program design specs (product specs) enhance testability.

a. The design spec has an accurate and complete matrix that relates
each subfunction (down to the lowest level) to each lowest level of subcomponent or
component in the design spec that fulfills wholly or in part that subfunction, in order to
enable traceability and testability continuity.

324

S'L . ..

Ib. The design spec transforms the requirements into the exact
configuration of the CPCI by detailing all inputs, outputs, interfaces, data bases, 1/0
formats, performance parameters, and flowcharts with complete, accurate, and testable

statements.

c. The design spec provides complete and accurate descriptions in

testable terms of each component, each subcomponent, and the data base.
d. The design spec describes the interrelationships and interactions of

the program with the data base, and shows the interrelationships and interactions
between subcomponents, in testable terms (e.g., dependencies, such that X executes
be fore Y).

Ie. The design spec provides for appropriate execution rates and
priorities of execution for various subcomponents, in order to r ivfulfill
requirements in an accurate, complete, and testable manner.

f. The design spec provides an adequate interrupt or task scheduler
hierarchy to facilitate managing different external and internal demands in an orderly,
hierarchied manner. Such exception handling also accommodates at least those errors
that can cause error interrupts to occur. These priorities are fully stated in accurate,

g. The Executive is determined in the design so that it oversees all
transfers of control (except to certain common utilities), so as to facilitate testing; and
redundancies (e.g., dual processors) that attempt to maintain the hierarchy and functions
intact and recoverable, to protect against critical failures, both operational and testing.

h. The design spec provides for detection of (including notification to
operators) and recovery from timing overrun (execution overload) in such a way as to
preserve data that can later aid determination of the cause of such overloads, both in
tests and in operational fleet fault detection.

Ii. All inputs and outputs listed in the design spec are accurate and
testable, and are traceable back to the requirements spec(s) and satisfy all requirements.

accuate j.~ All algorithms and equations in the design (product) spec are
accuateandtestable, are traceable back to the requirements spec, and satisfy all

requirements.

Ik. Module interface inputs, outputs, order of arguments, and processing
of inputs into outputs in the design spec correspond identically to the source code.

1 . The design spec provides a separate section that describes a
sufficient startup/restart and initialization process (both testable) for the weapons
syste m.

325

M. The design spec provides a separate section that describes all
exception (special) processing, including termination handling, handling external and
internal errors (separately), and interrupts, all in testable terms.

n. The design spec provides separate sections specifying and explaining
program interface inputs and (separately) outputs, in a complete, accurate, testable form.

o. For each module, the design spec has a separate description
specifying and explaining each input, another for each output, and another explaining
processing, all in terms which aid testing.

p. The design spec provides a complete and accurate diagram of overall
functional control flow, including timing determinants for each major function, and the
determinants (including timing) which determined priority execution order of modules,
and their interruptibility, etc., all in testable terms.

q. The design spec contains an accurate, complete, testable, and easily
understood set of charts depicting program flow (execution sequences of all modules);
data flow hierarchies among all modules are also well depicted graphically.

r. For each module, the design spec provides detailed flowcharts or
equivalents (depending upon language (structured or not) intended to implement the flow
charts) that identify all possible branching, all processing, all 1/0, all exceptions, etc.

s. The design spec provides testable memory storage estimates for
each module or routine, and collectively for each major function, which generally fits
any memory budg-ets specified previously in the requirements specs.

t. The design spec provides sufficient detail to enable coding from that
design spec, and to verify (by equation reconstruction from the code, logic reconsturetion
of program flow from the code, 1/0 traces, and so on) that the code faithfully follows, the
design spec.

U. The format of the design spec closely follows the organization of the
program, and each descriptive part tends to focus on one central concern.

V. The program timing scheme, as described in the design spec, is
easily understood, appears flexible enough to allow for timing modifications for any
module, and provides for reasonable timing margins for all functions, particularly those
most likely to grow (so rate groups, time slices, priorities, etc., are adequate) and relates
computer time lines with program time lines and windows.

326

W. The design spec establishes conventions to protect data integrity:

(1) The design spec requires the code to validate its own inputs
(self-check tests, e.g., to substitute safe defaults for illegal array indices or bad inputs,

4 and to record occurrences of these for later test and diagnosis).

1(2) The design spec requires the code to detect, record, and where
possible recover from internal failures or undefined operations-such as: underflow,
overflow (such as from division by zero), attempts to take negative roots, or other illegal
math arguments, singular matrices, divergence (instead of convergence) of algorithms,
illegal operators or operands, to facilitate duplication and retest of such occurrences.

(3) Protection against wrongful data access (e.g., overwriting
protected memory, attempts to access data not declared in the module to be required for
access, illegal addresses, illegal 1/0) is required of the code by the design spec and these

I occurrences are recorded to enable later retest and diagnosis.
(4) The design spec requires critical variables or register values to

be saved (upon interrupts, entries to other routines, etc.) to prevent unplanned loss and
vulnerability to interrupts, as well as recu rsi ve/re-ent rant coding to be minimized to
avoid excessive saves/restores and queue overloads.

(5) The design spec provides conventions for code to follow inI module interfaces, and conventions for 1/0 processing (e.g., which modules do 1/0, and of
which type: random access/sequential/indexed/formatted or not) to aid testability.

Itesting. x. The design spec establishes conventions for error processing to aid

(1) The design spec predetermines which modules will perform
error handling, what unique codes will uniquely identify each error, how to record or
report such errors, and the format rules for any error messages to aid test monitoring.

1(2) The results of any type of error or exception are explained in
the design spec (e.g., what is the numerical result of dividing by zero, after recovery) in
a way that aids analysis of test results.

y. The design spec has established protections against system lockups
and other errors, but also provides information on recognizing and escaping from these if
they occur, and records any such occurrences to aid later duplication for diagnosis and

analysis.

I 327

Z. The design spec provides for redundancies and backups in case of
recoverable failures or degraded functions, in a way that can be testably recorded.

5. A set of test documents (test requirements, test plans, test procedures,
test reports) demonstrates that the system is testable and able to function properly.

a. All requirements, are traceable between the test requirements (often
part of the requirements spec) and the test plan.

b. Test objectives in the test plan are clear and unambiguous and
correspond exactly to the test requirements statements.

C. The test method type stated in the test plans agrees fully with the
test method type for each function and subfunction that was stated in the requirements
spec.

verfy he d. Test plans are fully adequate, either individually or collectively, to
verfy hefunction(s) or subfunction(s) they address.

e. All test dependencies are adequately defined and taken into account.

f. All tradeoffs and test limitations have been justified and explained
adequately.

g. For each test, all pass/fail acceptance criteria are fully traceable
back to statements of requirements in the requirements spec and are fully explained.

h. Test plans collectively have no needless redundancies that provide
no more verification and make verification more diffuse and difficult.

i. Organizational responsibility is clearly defined for each planned test.

j. Resources and facilities are compatible and adequate to carry out
the test plans.

k. Test schedules are achievable, even for substantial retests and
problems in testing.

1. The test bed(s) have been previously validated, so that the weapons
systems acceptance tests do not degenerate into a vehicle for validating the test bed(s).

M. The resources, facilities, and test tools are adequately described in
the test plans and/or test procedures documents, and these describe limitations of these
t ooIs.

328

n. Any data models of expected results or acceptance criteria have
themselves been previously validated or tested for completeness and accuracy.

0. The test plans, test procedures, and test results clearly identify the
unique version of the end-item undergoing testing, and this may be verified by tape loads
and other procedures.

p. Prior to testing, the weapon system software has been run through
all applicable static analyzers, structure analyzers, test editors, code analyzers, symbolic
evaluation systems, compilers, assemblers, link editors, floweharters, etc., to determineI that no known errors remain in syntax or logic, which could compromise or complicate
the tests if not corrected; Appropriate listings of these results are available at the test
-i te.

q. Test procedures provide complete step-by-step instructions of all
steps needed to implement each test plan, and each test procedure corresponds exactly
and is traceable to one or more test plans, which are completely and accurately fulfilled
by the test procedure.

r. Test procedures provide adequate coverage of the test input space
(nominal and extreme acceptable input data, and out-of-range data drive the test
procedures), to exercise as much as possible of the code and logic paths.

S. Test plans and procedures documents, as determined by exhaustive
reviews, have no mutual or self-inconsistencies or gaps in coverage, and are useful.

t. Test data requirements and data reduction techniques incorporatedI in the test procedures are complete and traceable to test plan acceptance criteria.

U. Test plans and procedures have made adequate provision to verify all
interfaces (including hard ware-to-so f tware interfaces, software-to-software interfaces,
and software-to-operator interfaces), including all hardware dependencies (tested
preferably with nondestructive tests while performing required tests on failure detection,
reporting, and recovery).

V. Provision exists in the test plans and procedures for maximum
practical testing of all possible error conditions (both of internal and external origin), and
particularly for all practical tests of possible hazard conditions.

W. Initialization tests, which verify correct and complete initializationI of data, are provided for. These include storing test patterns in any data memory which
must be reinitialized (overlaid) at each system turnon or new mission in order to assure
that data left over from previous missions cannot cause errors, unpredictable results, or
failures in the present mission for weapons systems which are "reusable."

329

X. Software tests were run in accordance with approved test
procedures.

y. During tests, qualified witnesses certified that test procedures were
followed under the stated conditions, and that the proper expected test results occurred;
sufficient time was available during the tests for witnesses to be sure of the observations
that they certified, and these witnesses included representatives from procuring or
supporting agencies.

Z. Current descriptions of the item to be tested, and its software
printed on hardcopy listings, etc., test plans, and procedures, were available to witnesses
sufficienctly in advance of the tests for adequate review and familiarization.

aa. All test documents (plans, procedures, and reports) had provision for
ncremental delivery of sections as each became available.

bb. Test results met the minimum requirements, stated in requirements
specs to vali date performance:

(1) A sufficient number of tests cases were run to validate

performance.

(2) Boundary conditions are recoverable (tests are repeatable).

(3) Adequate analysis was performed and proper interpretation
and evaluation was done.

(4) Tests results conform with requirements specs.

cc. All errors were identified and evaluated and corrective action to be
taken was identified.

dd. All deficiencies were identified and evaluated, and corrective action
to be tak en was i dent if ied.

ee. Waivers and/or deviations were identified and documented, and
sufficient rationale is available for evaluation.

ff. All test documents (test plans, test procedures, and test reports)
conformed to applicable documentation standards.

6. MANAGEABLE DATA VOLUMES AND COMPLEXITIES characterize
testable software.

a. Data rates are manageable (will not overwhelm testing facilities).

(1) Data transfer rates will not overwhelm

nstrum entati on/reduction requirements.

330

(2) Data computation rates (cumulative, for all data which must
be recorded serially, in-process, or on-the-fly) are not excessive (requiring complex

sampli ng).
b. Algorithms for which intermediate results may require

instrumentation in the code, are not so complex as to make difficult the recording of
intermediate data.

C. The code does not involve great complexities (e.g., numerical
algorithms, numerous logic paths and trees, complex timing synchronization, many

interfaces that make test definitions difficult or complex).

d. Resource use (memory, timing, or interrupt execesses, or real-time

conflicts or interference) can be recorded and interpreted.

e. Data organizations help definition of inital data values required for
testing at each level, and consequent expected results, which were ideally placed in
appropriate preface comments.

7. Code is WELL INSTRUMENTED, or test aids and probes can easily be

added to test beds.

a. Checks (e.g., flags, probes, timers, performance monitors, in-range
checks, type-checks, error-pickups) can be activated selectively and universally to
detect, record, and where possible recover from anomalous conditions during tests.

b. Input and output data and intermediate (internal) results areIrecordable, from any desired routine, in a universal and flexibly selective manner.

C. Executive flow (trace of instruction sequences executed) is
universally and selectively recordable for location (address) ranges, times, branches only,

intutos d. Coverage-of-test monitors can detec t, for example, which

insrutins(addresses) were executed once or more, what branches or logic paths were

Ie. Automatic universal and user-selective collection of saved/dumped
test data enables real-time displays and/or post test data reduction and presentation,
including user-specified and automatic data conversions of input/output data to

man-readable forms (e.g., decimal numbers and graphics) for compression of results.

f. Support software (e.g., compilers, assembler, link edit loaders,I simulators, tape generators, post processors) provide useful tools for debugging by
detecting syntax errors, potential overflows, time excesses, etc.

331

g. All diagnostic or status messages provided during tests are clear,
unique, unambiguous, and self-sufficient, and all erroneous inputs and processing errors
are flagged.

h. All test aids -embedded in the code are clearly identified and
highlighted, and well explained.

. Unchanged inputs need not be re-entered with each new test case
execution; input is only required if a given parameter has changed since the last
execution.

332

I7

Attachment III

Suggested changes in MIL-STD-1679, before its possible adaptation as a Thi-ServiceI Standard:

1. Add to the end of Paragraph 1.2 this statement: "Any waivers of requirements
stated herein shall also solicit the review of any using command and any
supporting command or agency to which the developing agency will later
transition the weapons system for maintenance and/or operational use, if these
waivers of requirements might adversely affect system or subsystem
maintainability or usability."

(Rationale for proposed change: If a requirement is proposed to be waived but
that waiver might adversely affect the ability of using or supporting commands
or agencies to use or support the system, they should have a chance later to at
least point out how the waiver could degrade their capability to use or supn(v'"
the system later. The using and supporting commands will have to live WiLh
the consequences of any waivers or requirements in the operational life cycle,
so the SPO should at least be reminded to consider their needs.)

2. MIL-STD-1679 generally specifies that it is the contractor's responsibility to
perform this or that task. But some paragraphs do not specify who (the
developing agency or the contractor, etc.) is responsible for the activities
stated in the paragraph. The following paragraphs might leave some doubt as
to whether it is the contractor's responsibility or the agency's: Paragraphs 4.3;
5.2.2.1; 5.2.2.2; 5.2.2.3 (and also subparagraphs a, b, and c); all paragraphs
under (and including) 5.3 and 5.4; 5.5.3; 5.5.5; all under (and including) 5.5.6;
5.8.1 (including subparagraphs a, b, and c); 5.8.2 (including subparagraphs a
thru 3); 5.8.3 (including subparagraphs a thru 3); 5.9.1; 5.9.1.4; 5.9.1.5; and
possibly 5.11.2.2.

(Rationale for proposed change: particularly as in most instances the MIL-STD
specifies whose responsibility it is (the contractor's or the agency's) to do a
task, that performance should be uniform, and that each task should specify
who is to do it or be responsible for it, i.e., the contractor or the procuring
agency.)

3. As in the case of a minor type which could cause some problems because it is a
paragraph number, between paragraphs 5.12.3.1 and 5.12.3.3, change the
paragraph number from 5.11.3.2 to 5.12.3.2.

(Rationale: The paragraph number does not fit in sequence.)

4. Add to the last sentence of Paragraph 5.10.2.3 (which deals with software
quality test documentation) statements requiring that the last incremental
delivery of test documentation, or delivery of the full test document if not
delivered in increments, shall be delivered to the testing activity and to the
witnesses designated to represent the agency, soon enough to permit thorough
review before testing commences. Also add that said witnesses shall certify
that they have thoroughly reviewed the test documents before the test

commences.

333

(Rationale: Witnes.ses must be well prepared to detect test deficiencies.
Paragraphs 5.12.3.3 and 5.12.3.4 also require document deliveries soon enough
to permit meaningful review.)

5. Paragraph 5.10.3.1 (b) says, "intermittent errors shall be included in the count
of software error% and receive no special consideration". This implies that an
intermittent error that occurs 9 times is only counted once, but that should be
clarified as it would make a large difference if the error were counted 9 times,
instead of once.

(Rationale: Some potential ambiguity as to how to count intermittent errors
(once? or as many occurrences as are found, since that is a "new" error each
time it shows up after not being a problem for awhile) should be clarified to
say that an identical intermittent error is counted only at its first occurrence,
if that is the intent of this paragraph.)

6. Paragraph 5.1.2.6 (a) specifies description required for inputs and should
include description of "meaning" to conform with Paragraph 5.1.2.6 (c), which
specifies that "meaning" of each output shall be defined in the detailed
functional requirements.

(Rationale: Descriptive requirements for inputs should be as great as for
outputs, so "meaning" of inputs should also be described.)

7. The third line of Paragraph 5.4.4.1 (Abstracts) calls for a "list of other
components called." This should say "a list of other components called, in
order and number of calls."

(Rationale: Unless some indication is given as to how many calls to particular
external routines are made, and in what order, readers of abstracts for
components may not expect any calls to a particular routine after the first call
is encountered by them in the source listing.)

8. Paragraph 5.4.5.3 prohibits compound or complex source statements except to
support allowable control structures. This should be modified to refer only to
control structures, as compound Boolean constructs, etc., might legitimately
be used to set data values which had nothing to do with control flow at that
poi nt.

(Rationale: Some setting of data values, irrespective of control logic, might
most understandably use compound statements to obtain the value. So long as
it had no direct impact on control flow, that should not be prohibited. But
Paragraph 5.4.5.3, unless modified to refer only to statements affecting the
flow of control, might ban such methods of setting data, too. If the paragraph
really intended to ban compound or complex statements which also had nothing
to do with logic flow of control, as seems to result from the paragraph, that
seems to have questionable justification for the ban.)

334

9. Paragraph 5.5.6.2 (Cross Reference Listing) should have something similar to
the following addition: "Thiti cross reference may be machine-g~nerated, but
to the extent that indexing, offsets (displacements), and multiple references or
accesses to 2 or more operands in a series in a single instruction may cause
missed or erroneous cross-reference entries, these occurrences shall be
footnoted with correctionis."1 (The same footnote text may describe a number
of identical errors, if all bear that same footnote number). Any coding which
causes excessive cross-reference errors (by using index registers or other
operand address displacements, or single instructions with multiple memory
operand references, etc.) shall be minimized as much as possible. The
cross-reference shall also flag each occurrence (line number or instruction
address) which may set a variable (change its contents).

(Rationale: Cross-references, for reasons of economy and rapid reproductive
capabilities, are generally machine-generated in connection with compilation
or assembly or link edit runs which produce in-line, side-by-side listings, etc.
Any instructions which contain indexing or operand reference displacements
whose exact values may not be known to the software that generates the
cross-reference may miss some actual operand references, and erroneously
enter others. Such errors can be corrected by flagging and pointing to
particular footnotes (which can often be transferred easily by cutting and
pasting to new cross references). The excessive use of tricky indexing or other
displace ment-of-op erand techniques causes many such cross-reference errors,
as well as making the coding hard to follow.)

10. Add to Paragraph 5.8.1 a new subparagraph (d): "Ensure the capability of the
module to handle properly and survive any erroneous external inputs."

(Rationale: Ideally, some higher level does I/0, but if any I/O to/from any
external equipments is done in this routine, it should have a demonstrated
capability to handle possible faulty inputs, so that undefined or unpredictable
results do not occur.)

11. Paragraph 5.10.3.1 (c) (the number of unresolved technical errors in all
deliverable documentation) is too stringent, even if there were a mutual
understanding of whether a disputed statement was a "technical error," which
may be too vague a term. One evaluator can find a large number of errors
that can be fixed, and another with a different viewpoint or approach can find
other errors. Also omitted was any mention of whether documentation errors
(defined in Paragraph 3.9.2) include errors of omission, or only errors of
commission (misstatements).

335

(Rationale: An evaluator who wants to "pass" the documentation can make the
meaning of a "technical error" so stringent that even a New York City
blackout would not suffice to demonstrate a "technical error." On the other
hand, an overly critical reviewer can find no end of errors (quite aside from
mere typos or misspellings) merely by going over the documents one more
time, to "tfail"f the documents. The criteria is too vague, in the legal sense, in
failing to give warning of what kind of statement in dispute might
unquestionably be a "technical error," and what kind just as unquestionably
would not be a technical error.)

12. Paragraph 4.2 states that "the design shall completely satisfy all requirements
but shall not exceed the requirements without procuring agency approval." It
might be better to say that "the design shall completely satisfy all
requirements, but no unauthorized functions shall be provided without
procuring agency approval."

(Rationale: The phrase "shall not exceed the requirements" almost seems to
imply (notwithstanding the paragraphs which require at least 20% reserves of
timing and memory) that no additional capacity can be pre-provided, but not
used. It is easier and better to merely forbid unauthorized functions, which is
not so vague a term as "exceed the requirements." Paragraph 5.10.2.7 dealing
with stress testing, calls for requirements to be exceeded to assure that any
exceedance of capacity does not result in catastrophic failure. But that
clearly only refers to time and data handling exceedance of capacity, etc.)

13. The sentence of Paragraph 5.1.2.3 calls for contractors to identify all
documents that define or constrain the program performance requirements.
An additional clause might profitably be inserted in this sentence requiring
them to identify the version numbers of those documents (that is almost, but
not quite, implied). It should also require them to state which sets of
paragraphs, etc., in each document constrain the program performance
requirements.

(Rationale: Particularly where many documents of large size might be cited as
constraining program performance requirements, the exact portions of those
documents that are alleged to constrain the requirements should be identified.
Otherwise, reviewer-, can have a difficult time wading through unnecessary
material. Even more important, it helps define what those constraints are if
we know which paragraph numbers (sets of paragraphs) impose the constraints.
That way, if it is apparent that some other paragraphs in the same documents
did not impose constraint, but seem to external reviewers to impose additional
constraints, then such omissions can be noted and corrections or explanations
requested.)

336

14. In Paragraph 5.10.2.9, the use of the term "off line" does not make totally
clear whether that also includes support software run "off-line" on other
machines, or if it only means maintenance/diagnostic programs, etc., which
run on this machine, if it is not running the operational weapon system
program. It probably means the latter, but that is uncertain.

I (Rationale: As "off-line" software might mean two different things (stated
above) to reviewers, the term should be clarified.)

115. Paragraph 5.4.6 says that "there is no requirement that flowcharts be a
deliverable item." That may be too strong a statement. It might more
justifiably say that flowcharts are not required unless specified as to extentj and degree of detail by the procuring agency.

(Rationale: As in MIL-STD 1679's own figures la through If, depicting
flowchart symbols for structured programs, flowcharts of various types may beI helpful, so should not be dismissed without consideration of their value. It is
true that structured programming, by avoiding "go to 's"', etc., need not rely
nearly so much on flowcharts to show control flow if it Ls top to bottom and
indented in the code. But the agency, for the sake of efficiency, may allow a
developer to use certain assembly or machine code routines which are run so
often that they must be optimized. If the blanket statement remains that no
flowcharts are required, this would extend also to lower level assembly
routines where flowcharts are most needed. Further, generation of source
language, in many program ming/documentation standards, is to be done from
flowcharts; if these are absent, so is the documented basis for generating the
source itself. Finally, paragraph 5.2.2.3 requires a determination of flow of
program data and control in all required modes. That might, in many cases,
require flowcharts.)

I16. Paragraph 5.4.1 says, "symbolic parameters shall be grouped at the beginning
of each subprogram." The intent is generally to take any symbolic parameters
in any block of code, and put them at the front. But "subprogram" tooI narrowly may imply only a certain hierarchical level of organization, when in
fact symbolic parameters may be found in "subprograms, routines, modules,
and procedures," depending upon the system and application. This latter set ofI four might better replace the single work "subprogram."

(Rationale: The possible restriction to only one hierarchical level (subprogram)
might be too narrowly interpreted to mean exclusion of grouping in other
hierarchical levels. The definitions in Paragraph 3.3 (component) are clearly
more applicable, i.e., not restricted to just one hierarchical level.)

17. In Paragraph 5.3.6, "Recursive" may need explanation, or perhaps it is
explained in the glossary (AD A056868). At it is the subject of a complete
paragraph, however, perhaps "recursive" should be defined in Section 3I (definitions.)

I 337

(Rationale: To some people, "recursive" procedures or routines are those
which call themselves. To others, it implies merely a special king of looping.
Perhaps others have different definitions. One definition should be chosed and
given here.)

18. In Paragraph 5.1.3 (system resources), perhaps the parenthetical expression
"(including size)" should be added after "memory."

(Rationale: Definition of "computer memory" might be taken to mean merely
a definition of types of memory structure, tec. But the requirement should
clearly specify that the amount or type of memory will be explained.

19. Paragraph 5.8.2 (d) might be changed to replace "ensure the" with the
statement "ensure the adequacy of."

(Rationale: "ensure the" implies making sure that the interfaces exist, but
says nothing about their adequacy.

20. In Paragraphs 5.1.2.5 (c) and 5.2.3 (virtually identical paragraphs describing
"Intersystem interface"), add to the sentence which bring-, "data quantity,
frequency, rate, format, content, scaling requirements, and conventions shall
be developed", the following words, inserted after the work "requirements":
"source and destination, type, range, and limits, accuracy requirements,
meaning of each data element."

(Rationale: The intersystem interface should specify which system sends what
data ("meaning of each data element") to what other systems ("source and
destination"). Further, the type of data (discrete, continuous variable, floating
point or fixed, single or double precision, etc.) needs to be known. Range and
limits for intersystem variables partly determine what each system must do
with the data, so they should be specified here. The same is true of accuracy
requirements which is more than just the value of the least significant bit, but
includes algorithms error, etc.)

21. In Paragraph 5.1.2.6 (a) (inputs), add "meaning" (which was specified in
Paragraph 5.1.2.6 (c) for outputs, so is equally necessary for inputs) to the list
of input attributes. -Also add "type and accuracy required" and change "range"
to "range and limits."

(Rationale: "Meaning" should as much describe inputs as outputs. And the
"type" of data (discrete, continuous variable, floating point or fixed, single or
double precision: single word or doubleword) is also needed for interface
definitions. By the same token, "accuracy required" must be known to
establish how much care must be taken in processing such inputs, in terms of
truncation, called out in Paragraph 5.4.3.4, which addressed the number of
significant digits in inputs. "Range" may or may not be synonymous with
"limits," as a normal range of a variable might have a separate set of "limits"
imposed byond that range for purposes of safety, protection against machine
exceptions (divide by zero, etc.) Thus, "range and limits" is more complete and
covers the minority of cases where they are not the same thing.)

338

22. In Paragraph 5.1.2.6 Wc (outputs), and "quantity" (which was specified in
Paragraph 5.2.1.6 (a) for inputs, and is equally necessary for outputs). Also add

"type and accuracy required" and change "range" to "range and limits."

(Rationale: For "quantity," that is as needful for outputs as for inputs. For
"type," the same rationale as for input types exists. For "accuracy required,"I this requirement determine the degree of algorithmic or computational
accuracy that will be required of the outputs, which dictates whether single or
doubleword calculations, etc., will be used. The same rationale exists for
changing "range" to "range and limits" as was given in the rationale for
changing "Paragraph 5.1.2.6 (a) (inputs).)

23. The only reference to required or permissible cycle times for parts of theI software subsystem is found in Paragraph 5.2.2.3 (b), which addresses
permissible cycle times for each subprogram. "Subprogram" should perhaps be
changed to "component" so that permissible cycle times are not restricted only
to subprogram levels, in terms of requirements, definitions. By the same

token, Paragraph 5.2.23 itself should perhaps change "subprogram" to
component," where it presently requires a functional description of all inputs,

outputs, and processing only for each subprogram.

(Rationale: Paragraph 3.3's definition of subprogram equates it to a major
functional subset of a program, and says it's made up of one or more modules.
The same definition Paragraph (3.3) defines a module as an independently
compilable software component, comprised of one or more procedures and
routines, which is the lowest level defined by Paragraph 3.3. A component is
defined as a subset of the weapon system software which can be hierarchically
broken down into components of program, subprogram, module, and procedure
or routine. Thus, Paragraphs 5.2.2.3 and 5.2.2.3 Wb only require definition of
permissible cycle times, and inputs, outputs, and processing seemingly at the
subprogram level. But there should be a requirement to define permissible
cycle times, and inputs, outputs, and processing for all components, not merely
at the subprogram level of hierarchy. Paragraph 5.4.4.1 states a requirement
to list all other "components" called, and all calling components. The business
of calling implies (permissible) cycle times, and inputs, outputs, and processing
requirements, all of which can have to do with any component, not just the
subprogram level of components.)

24. Paragraph 5.2.2.4 addresses resource allocation and reserves, including
memory reserces, stating that "total system memory, input and output
channels, and processing time reserves of at least 20 percent shall exist at the
time of program acceptance ..."1 This should be changed to say "total system
memory of each unique type not interchangeable with other memory types
existing in the weapons system shall have reserves of at least 20 percent at the
time of program acceptance..." The same kind of change is needed for the 20
percent reserve requirement for input and output channels of unique types not
interchangeable with other I/0 channels which help comprise the weapons
system. The same is true for definitions of possible different types of
processing time reserves of 20 percent or more; this should say processing time
of each unique type or independent embedded computer. The same type of

changes should be made in Paragraphs 5.5.2 and 5.10.1.

339

(Rationale: If several kinds of memory exist in the embedded computer
(sub)system, such as RAM and RCM memory, or memory of different lengths
(such as 15 bit memory in one section, and 19 bit memory in another), and
these are not interchangeable, the system growth may be stymied even if a
"total" system memory reserve of 20 percent exists. This can occur if, for
example, plenty of RAM memory exists to produce a total reserve of 20
percent, but no ROM instruction memory reserve exists for growth of program
instructions. Or if plenty of ROM constant and instruction memory exists, but
no more RAM variables can be accommodated, even though total system
memory technically has over 20 percent of total system memory reserves,
again system growth is stymied. Any memory type which cannot be
substituted for other memory types now on the weapons (sub)system is thus
vulnerable to this problem. The same dificulty exists for 1/O channels of
different, noninterchangeable types, and for multiprocessor types which are
not interchangeable in the functional sense, so. that one runs out of time while
the other has 50 percent left.

25. In Paragraph 5.2.2.6, data base design, the contractor is to take into account
all data used by two or more subprograms. Perhaps this should be changed to
say two or more components (not subprograms).

(Rationale: A subprogram can consist of one or more modules, which in turn
can consist of one or more procedures or routines, by Paragraph 3.3's
definitions. But suppose that 27 routines communicate between themselves as
part of the same module, or that 13 modules pass data between each other, but
all are part of the same subprogram. Then there would be no requirement for
the contractor to take this data into account, merely because they happened to
be in the same subprogram. In fact, such hierarchical grouping could be used
(all in the same subprogram) to avoid this requirement. It may even be true
that most data is passed between two routines or modules within the area
subprogram, in which case most of the data could be excluded from the data
base design. The requirements for data base design should not depend upon
arbitrary allocations of modules or functions into (or not into) subprograms.)

26. In Paragraoh 5.4.3.2, the term "mixed mode"' is used without having been
defined in Section 3Ts definitions. It might mean such things as multiplying
integer by floating point numbers, or might be broader to include such
operations as adding single word data to double word data, or multiplying such
different length words together, etc. Perhaps the "1AVSO ADP Glossary
(NAVSO-P-3097) mentioned in Section 2 has such a definition, but it may not
be readily available.

(Rationale: As terms such as "patch" and "shall" etc., are defined in Section 3
or within the text that uses such words, so also "mixed mode"' should be defined
to avoid misunderstanding of this commenting requirement.)

340

127. Paragraph 5.4.3.4 refers to significant digits of outputs, and syas that "the
degree of computational error shall be analyzed to determine if systems
accuracy requirements are fulfilled." But nowhere, it seems, is there any
explicit statement of requirements to define accuracy requirements. This
could be cone as suggested earlier, in Paragraphs 5.2.2.5 (c), 5.2.3, 5.1.2.6 (a),
5.1.2.6 (c), etc. But somewhere a requirement for statement of accuracy

requirements is necessary to the meaning of Paragraph 5.4.3.4.

(Rationale: If no requirement exists to state all input and particularly output
accuracies somewhere, there is nothing for "significant digit" requirements to
be compared or chacked against.)

28. Add to the first sentence of Paragraph 5.4.4.1 "any unusual exits orI terminations."

* (Rationale: Unusual exits or terminations (such as those required for error
recovery or program stop, etc.) should be described in component comments or
descriptions, so they represent the extraordinary event whose description is
most easily and logically found in header comments.)

I29. Paragraphs 5.5.5 and 5.11.1.2 refer to sequence numbering of the smallest
independently compilable units of code (modules). Paragraph 5.5.5 requires

* sequence numbering in some multiple of tents; Paragraph 5.11.1.2 provides for
I structuring sequent numbering so that "future changes to any component can

be properly noted." The latter almost implies that the least significant
digit(s), which would originally be 0's for multiples of tens in sequenceI numbering, would be used for noting future changes. (If the most significant
digits of sequence numbers were used to denote changes, that would
compromise the sequence numbering itself). Thus, Paragraph 5.11.1.2 should

I perhaps state that part of the sequence number field shall be used ex'~lusively
I as a means of identifying update numbers or revisions, etc., and that this shall

be the least significant digit(s) of the sequence number field.

I(Rationale: Though this may be a minor point, sequence numbers are often
used for more than just sequencing. This most frequently includes using the
least significant (rightmost) digits to record version number or update number.
Some management systems, such as PAMVALET or LIBRARIAN require
certain reservations as part of the configuration management system (say,
three digits) to identify updates in the order in which they occurred in the

I 30. source program.)
3. Add to the last sentence of Paragraph 5.7 (procuring agency approval of

procedures for operating weapons system software) these words, "which shallI also submit the procedures to all agencies scheduled to use the system
operationally, for those agencies' review."

341

(Rationale: As operating procedures will be the direct concern of the agencies
which will operationally use the weapons system, their comments and perhaps
their concurrence should help shape those procedures. Using agencies will
have to live with the procedures for the better part of the weapons systems'
Ii f e cycle.)

31. Add to the end of the first sentence of the second paragraph of Paragraph 5.3
the following, "The procuring agency shall have the option of requiring
incremental delivery of test specifications, or of test plans, or of test
procedures, or of test reports, or of all of these, as, they are developed in
increments.

(Rationale: These are generally developed in increments, and so should be
available for review on a timely bases as they are developed. This avoids the
problem of having to review massive test-associated documents all at once,
often with very little time. Comments can be returned more quickly and
incorporated for revisions even before some of the later sections of the test
documents are produced.)

32. Add after the end of the second sentence of the second paragraph of Paragraph
5.8 the following, "Such representatives may include representatives of
agencies scheduled to assume maintenance or operation of the system after it
becomes operational. All witnesses designated by the procuring agency shall
be qualified by adequate familiarity with the system.

(Rationale: Witnesses should be capable of determining the validity of tests.
This requires considerable familiarity with the system. The agencies in line to
use or maintain the system after it becomes operational have bested interests
in getting maintainable and usable systems, so representatives from these
agencies can advantageously supplement those of the procuring agency,
particularly if they participated in previous analyses and tests.)

33. Add the following after the end of the third sentence of the second paragraph
of Paragraph 5.8, "Descriptions of the same shall be provided soon enough
before the tests to enable meaningful review by the procuring agency."

(Rationale: This merely reinforces the provisions of Paragraph 5.12.3.3, which
provides for preliminary working level reviews of all documents followed by
formal reviews, delivered "sufficiently in advance" to allow adequate internal
review by each activity.)

34. Add the following to the end of the second phase of Paragraph 5.12.3.3; "All
system requirements shall be stated, or explicit paragraph references in
deliverable documents shall be cited for each system requirement. Methods of
fulfillment of testing requirements for each system requirement will be stated."

342

I (Rationale: Some single test document should collect all system requirements,
or references in deliverable documents to all system requirements, or both.
Otherwise, it is difficult to determine even what is to be tested. It is notI uncommon for many system "requirements" to be slipped (by reason of
schedule exigencies, etc.) from requirements or development specifications,
into design or product documents. But if testing is done against the paragraphsI in the requirements documents, those requirements that were "Slipped" into
the design documents may not show up in the tests. It is far more sure to
require that some one test document contain all testable requirements than to
require that tests be based purely upon the requirements document(s) which
does not always contain all requirements.)

35. Add to Paragraph 3.9.1 (software error definition) these words, "or causes

unauthorized or harmful results."

(Rationale: The statement of a software error presently implies failure to
achieve a specified performance, but does not really explicity address
undesired effects which were not intended.)

36. In Paragraph 5.8.1, add 3 new lines: (d) "ensure capability of the module to
detect, handle properly, and survive erroneous inputs"; (e) "exercise all logic

paths in the module"; (f) "exercise all algorithmns with inputs, or representative

I values and limit-exceeding (data) values."1
(Rationale: Any input which might be erroreous (particularly from
uncontrollable external sources) should be so tested in modules which use it to
verify the adequacy of protective or recovery measures. An unless all logic

paths, including conditional branching, can be checked, the module has not had
a complete check of its instructions. (Tis does not imply that all possible sets
of data values need be tested.) Further, algorithms must be at least nominally
tested, which at a minimum menas testing with a nominal input(s) and one each

of any group of extreme values at and beyond its design limits.)

137. To Paragraph 5.10.2.4, add the following, "where possible, nondestructive
testing of software failure detection/recovery shall be used, but all failure
detection capabiliiies shall be tested."

I (Rationale: Any failure modes which are not tested may later emerge during
abnormal conditions, which not only might constitute a safety problem, but
also make observation difficult for subsequent ground-based debugging. And

repeat, if only from the logistics standpoint of time required to replacefiue whcaa nyb oeb etutv etn r oedfiutt

destroyed part upon which failure test relies for retest.)

1 343

38. To Paragraph 5.6, add the following, "Delivery on physical media, machine
readable on government equipment, %hall consist of both source and object
programis."

(Rationale: Typically, weapons system software source programs are
transformed by compilers, assemblers, translators, etc., into the object
language on off-line, large-scale general purpose computers. But at most
installations, installation uniqueness exist, even on "identical" machines. This
ste ms f rom the fact that on aaiy given installation which supports standard
language processors, of the up to thousands of patches which might be
incorporated as "fixes," no large installation has incorporated all of them, and
so rarely will patch sets be identical between even "identical" large computers
used at a development facilty versus a government facility to be used for
software maintenance. This always raises some suspicions that perhaps the
transformation from source to object will not be identical, particularly if
unusual language extensions are used in the compilers, etc. Only if the object
is supplied as a second file for the source from which it was produced can the
receiving installation check on a record-by-record basis to be sure that the
source was correctly transformed into object.)

39. To Paragraph 5.8.3 (b), add the following, "Initialization tests shall include
storing test patterns in any data memory which is required to be re-initialized
(overlaid) at each system turnon or new mission. This will assure that any data
left over from previous missions cannot cause unpredictable results, errors, or
failures in the present mission, for weapons system% which are "reusable."

(Rationale: Unless some means is provided to be sure that all initialization
causes a positive overlay or overwrite of the particular memory required to be
initialized, the possibility exists of "old" data in certain rare combinations
causing problems for "new" missions.)

40. Add to Paragraph 5.10.2.1 (test environment) these words, "All 'truth models'
and test tools, including interfaces, shall have been verified and validated for
their use in these tests before the system test begins."

(Rationale: If the test tools are not prevalidated, the danger exists that the
test will become more a vehicle for validating the test tools than for
validating the weapons system software.)

41. To Paragraph 5.10.3.2 (patch limits), add, "In general, conditional branching
logic, etc., should not be patched over for testing. Instead, data values should
be patched or generated by execution to cause the conditioned branches
needed for the tests. If such conditionaly branches must be patched over,
other tests will check those unpatched conditional branches."

(Rationale: If tests patch over conditional branches, they cannot test, at least
for that test, the validity of the conditioned branching and, therefore, any
instruction it might access for those data values.)

344

42. In Paragraph 5.8.3 (a), add these words after the word 'ensure', "the workability
of," so it reads "ensure the workability of the total man-machine interface."
(Rationale: "Ensure the man-machine interface is an action empty of meaning
unless it is stated what about the man-machine interface will be ensured.)

143. To Paragraph 5.10.2.5, add these words, "Sufficient time shall be allocated to
each test to enable the agency-designated witnesses to adequately verify all
initializations, switch settings, operator procedures, and to record all
observable results."'

(Rationale: Test operators can become so proficient that the rapidity of their
finger movements could make Blackstone the Magician envious. ThenI witnesses simply cannot follow and verify all of their actions in setting toggle
switches, and observing results (often in the form of binary numbers displayed
in rows of lamps). The witnesses cannot then really "witness" the tests
adequately. This is usually the result of the operators' management (or theI operators) failing to allocate enough time to go through the tests sufficiently
slowly to permit adequate observation by the witnesses.)

I44. To Paragraph 5.10.2.6, add the following, "All tests shall be in random order,
except that those software portions (e.g., data entry and display, etc.) uponI which other tests may depend, shall be done first."
(Rationale: If certain portions of the software test involving software upon
which other tests depend are not done first, it calls into question thoseIdependent test results. Particularly if a failure occurs, it then becomes
difficult to determine if the fault lies in the software being tested directly
now, or in the software which is being used indirectly (as for data entry and
display, etc.). To the extent that software should build upon that softwareI upon which it depends by first validating the latter, the present statement that
tests will be in random order decreases somewhat the confidence in the
results. Other than the dependency problem, it is indeed better to have the

tests run in random order, to detect any inadvertent test order dependencies.)

45. Change Paragraph 5.10.3.1 (d), "all software errors," to say "all software and
documentation errors."
(Rationale: Because Paragraphs 3.9.1 and 3.9.2 specifically distinguish
between software errors and documentation errors, respectively, the paragraphI as it now stands fails to state a requirement to document errors discovered in
the documentation during the test run. Documentation errors should indeed be
distinguished from software errors. But the provisions of Paragraph 5.10.3.1
(c) (allowable errors in deliverable documentation) should certainly include anyI documentation errors found during the test run, and Paragraph 5.10.3.1 (d), if
not modified, fails, to provide for this.)

1 345

46. Change the phrase in Paragraph 5.11 (a) "positive identification" to "positive
identification and description."

(Rationale: Identification is incomplete if not coupled with at least a small
amount of description for configuration management purposes.)

47. Add a new Paragraph 5.10.2.11, as follows, "The procuring agency will
designate a qualified representative, which may be from the activity scheduled
to maintain and update the software to test the adequacy of the
contractor-deliverable maintenance documents and software for agency use.
In this test, the qualified agency representative will verify on the appropriate
machines that the deliverables are adequate by themselves to enable complete
updates of the source and object programs of the weapons system. This test
will perform a simple source update involving two or more different modules.
Likewise a simple object update (patch) involving two or more separate
modules shall be done. This will provide a user-oriented proof of the adequacy
of software update procedures. If no such computer or software or hardware
are to be located at any Government activity, the appropriate demonstration
of update capability will be done at the contractor's development site, and will
be done by contractor personnel in that event, but subject to agency approval.

(Rationale: Some live test of update capability (involving also linking together
two or more separate sections of code) is needed to assure that such
deliverables are usable by users (maintainers) directly from self-sufficient
documents and supplied software and software procedures. Otherwise,
uncertainty exists about whether nondevelopers can update code.)

Suggested Changes to MIL-STD-483:

I. Change "accuracy/precisi on" to "accuracy, precisi on" in Paragraphs
60.4.3.2.1.1 (inputs), 60.4.3.2.1.3 (outputs), 60.4.3.3.3 (system parameters) and
any other places in MIL-STD-483 where such a phrase may occur. This will
prevent misinterpretation of this clause by contractors to mean "accuracy or
precision," in the sense of merely supplying bit precision of inputs and outputs
instead of actual accuracy in the sense of algorithm error, etc.

(Rationale: The slash (U) is ambiguous. It may erroneously be taken to allow
the contractor to merely specify the value of the least significant bit (scaling)
of an input or output, instead of the algorithmic and bit error, as determined
by error budget analysis, etc. If only the scale value of the least significant
bit is given, this means that meaningful analysis of accuracy is almost
impossible.

2. In MIL-STD-490, Paragraph 60.4.3, acceptance test requirements were
specified to be accomplished, but in MIL-STD-483, Paragraph 60.4.4.3, which
was supposed to supplement and follow 490 (a DOD document), the Air Force
483 said that acceptance test requirements were not applicable to CPCIs.
That has the effect of repealing MIL-STD-490's Paragraph 60.4.3, yet
MIL-STD-483 should comply with it.

(Rationale: If DOD 490 has precedence over Air Force MIL-STD-483, then
MIL-STD-483 should conform and not contradict MIL-STD-490.)

346

